
Evolutionary Dynamics : ID 4201

The Trailer



What is Life ?

NASA’s definition:

Life is a self-sustained chemical system capable of undergoing Darwinian 
evolution.

----- Gerald Joyce

Life as we know it is much more constrained. 

Enclosed within a protective cell wall.

Carbon-based, uses DNA for genetic information storage and synthesizes 
proteins to perform crucial tasks.

Protein synthesis uses a genetic code which encodes only 20 amino acids.



Nothing in Biology makes sense except in the light of evolution.
----- Theodosius Dobzhansky

Multiple Sequence Alignment of a segment of a gene

Transparent blue strips indicate locations where the amino acids in the human and mouse gene segments differ
There is no difference between the human and chimp for this gene segment

Humans diverged from chimps approx. 5 million years ago



Darwinian Evolution
Mutations occur at random

Mutations can be advantageous, deleterious or neutral.
A random mutation can confer a slight selective advantage to an 
individual which enhances its ability to survive and reproduce in the 
given environment with respect to its competitors.
This slight advantage leads to its progeny surviving and propagating with 
greater probability. 
Fixation of the mutant - Over time this can lead to the mutant individual 
taking over the entire population.

(Pictures taken by Olaf Leillinger)The Peppered Moth Story

Pre-industrial revolution Post-industrial revolution

Post pollution control



Topics

Introduction to Evolution
Concepts of sequence Spaces and Fitness Landscapes
Evolutionary Games
Effect of Finite Populations
Evolutionary Games in Finite Populations
Introduction to Evolutionary Graph Theory
Spatial Games: Cooperation and Conflict between interacting agents 
Evolutionary Games on Networks
Evolutionary Dynamics of Cancer

Objective: To develop a quantitative understanding of evolutionary processes
Tools: Basic Calculus and basic statistical concepts, simple computer programs
Books : Evolutionary Dynamics by Martin Nowak (Primary)
Evolution and the Theory of Games by John Maynard Smith (Secondary) 
Mathematical Models of Social Evolution: A Guide for the Perplexed by McElreath & Boyd
Marks based on assignments, mid-term exams, final exams, paper/proposal presentation



Big Questions
How do populations evolve ?

How does the mutation rates of agents in the population affect long-term 
population structure ?

What is the effect of selection on population structure when there are mutants with 
varying fitness in the population ? (Survival of the fittest ?)

Under what conditions can a neutral (no selective advantage or disadvantage
relative to the wild type) mutant take over the entire population by chance ?

How did cooperation emerge in a world where individuals try to maximize their 
benefits and minimize their costs ?

Role of underlying network structure on the evolutionary dynamics of the population

What is the effect of finite population size on evolutionary dynamics ? 

How can we explain the sudden proliferation of certain infected cell types which lead 
to cancer ? 



Two Examples
1. Random Selection:  Evolution of population structure of two types of individuals having 
the same fitness.

Two types represented by two different colours, red and grey.

The two colours are initially randomly distributed across the grid.

Evolution is mimicked by each patch randomly picking another patch to update its own 
colour

Over time, one colour will gain a slight dominance over the other.

The dominant colour will spread as it is more likely to be picked to update the colour of a 
patch. 

The random nature of the process can lead to shifts in the dominant colour

Eventually one colour takes over the entire grid. 

Since there is no advantage of one colour over the other, each colour is equally likely to 
take over the entire grid. 



2. Fitness-dependent selection :  Evolution of a population of cooperative/altruistic and
selfish agents

Evolution of the population depends upon fitness determined by two phenotypic traits.

Cooperative/altruistic behaviour (phenotype) comes with a cost as well as a benefit to the agent.

There is no cost for selfish behaviour.

Due to the cost associated with altruism/cooperation, the fitness of altruistic agents are 
somewhat less than the fitness of selfish agents.

Population evolution is mimicked by changes in the colour of each agent over time.

Colour changes are determined by the fitness and number of altruistic and selfish agents 
surrounding each agent.

Population evolves from an initial state of roughly equal numbers of altruists and selfish agents to 
a final stage in which either selfish or altruistic agents dominate.

Gives insight into how cooperation/altruistic behaviour can be sustained in spite of the cost 
associated with such a phenotype.



Sequence Space : A sequence of length L is a point in L-dimensional space where 
each dimension has 4 discrete values corresponding to the 4 nucleotides. 
There are 4L discrete points in the sequence space and each point corresponds to a 
distinct sequence of length L. 
When only purines (A and G) and Pyrimidines (T and C) are distinguished instead of all 4 
nucleotides, each of the L dimensions in sequence space has 2 discrete points è the 
sequence space for a sequence of length L has 2L discrete points.  
For L=3, the sequence space for sequences made up of purines (represented by 0) and 
pyrimidines (represented by 1) has a total of 23 =8 discrete points and can be represented 
by the vertices of a cube. 

Movement in sequence space occurs in discrete steps and Evolution is a trajectory 
through sequence space

Sequence Spaces and Fitness Landscapes
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Fitness Landscape: Fitness determined by the phenotype i.e. characteristics like 
behaviour, morphology, structure, shape etc. 
Genotype è Phenotype mapping determines how changes in the genome affect the 
phenotype – the most challenging problem in Biology
Fitness landscape : Direct mapping between genotype and fitness. 
Fitness Landscape: (L+1)dimensional space where the first L dimensions describes the 
sequence space and the (L+1) th dimension represents the fitness associated with each 
of the 4L (or 2L ) sequences
Evolution of sequences amounts to movement in the fitness landscape and Adaptation
is an attempt to attain peaks in the fitness landscape.
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Adaptation of a population of 10 sequences of length L=2
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After some generations After many more generations

Evolution Evolution

Type Frequency
00 0.2
01 0.3
10                             0.2
11 0.3

Type Frequency
00 0.1
01 0.1
10                             0.1
11 0.7

Type Frequency
00 0
01 0
10                             0
11 1

A population is well adapted if most (or all) of the members cluster around a fitness peak in 
the fitness landscape



Adaptation: Generic case

Well adapted population 
clustered around the peak Initial population distribution 

Sequence Space

Fitness

Sequence Space

Fitness

Evolution

Size of the circles represent the frequency of the corresponding sequence in the population 

Below Error Threshold : Adaptive evolution

Sequence Space

Fitness

Sequence Space

Fitness

Evolution

u<1/L

Eq. freq. of 
Type 0



Above Error Threshold : Non-adaptive evolution

Sequence Space

Fitness

Evolution

u>1/L

Fittest Sequence Type (Type 0) lost from the population

Sequence Space

Fitness

Eigen’s Paradox
For a replicating molecule to be viable without error-correcting enzymes, its length should be small.

For a replicating molecule to encode error-correcting enzymes its length should be substantially larger 
than several thousand bases. 



RNA virus Error Catastrophe

Anti-viral effect manifest by enhanced mutagenesis of the Polio virus genome 

High mutation rates è loss of viability of the Polio virus genome 

Polio viruses reside near the edge of the Error Threshold

Modest (less than 2-fold) increase in mutation rate è 50% of the viral population becomes unviable

4-fold increase in mutation rate è 95% of the viral population becomes unviable. 

High mutation rate produces Polio-virus mutants having low infectivity

The amount of infectious virus genomes in the population is reduced several fold 

as concentration of Ribavarin increases. 

Ref.: Crotty, Cameron, Andino; PNAS 98, 6895-6900 (2001) PFU: plaque forming unit
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How does Mutation Rate per site (u) across organisms compare with the Error Threshold (1/L) ? 

Note: Organisms remain viable only if uL<1)  



Pictorial representation of evolution by mutation without selection

A-type B-type

Time=t

Time

Repeat process for other members of population

#A #B

nA nB

Time=t+1 nA-1 nB+1

Check if RN < u1, if true 
mutate A to B. If False, 
leave A unchanged

Pick Random members 

Check type A or B



Moran Process

Assume two types of individuals A and B in the population of N individuals, both types having the 
same fitness. 

Fixation Probability of A: Probability that the frequency of A increases from an initial value of i/N 
to a final value of 1 i.e. the final population consists entirely of A

Question: What is the fixation probability of A ?

A-type B-type

A picked for reproduction & B for death B picked for reproduction & A for death A picked for reproduction & A for death

Time=t Time=t Time=t

Time=t+1 Time=t+1 Time=t+1

Probability = p i,i+1 Probability = p i,iProbability = p i,i-1

p i,i-1 + p i,i + p i,i-1 =1

In every generation, one individual is picked at random for reproduction and another individual is 
picked at random for death. 



Difference between Invasion and Fixation

Invasion is a special case of Fixation

In deterministic simulations involving the replicator equation,
Invasion by type A è frequency of A increases from a very small fraction x=e << 1 è x=1
Fixation of A è frequency of A increases from any x è x=1

In stochastic simulations like evolution by Moran process 
Invasion by type A è frequency of A increases from x=1/N è x=1
Fixation of A è frequency of A increases from any x (such that 0 < x=#A/N  < 1) è x=1

NOTE
The inability of A to invade a population of B does not mean that A cannot get fixed in the 
population if its initial frequency is sufficiently large. 



Evolution with selection via Moran Process

Reproduction: Occurs with probability proportional to the fitness of the agent

Death: Occurs at random, independent of the fitness of the agent 
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Invasion Probabilities for N=100



Standard Game Theory

Two players A and B play a game 

Primary Question: What strategy must each player adopt to maximize its payoff ?

Neither player knows the opponent’s strategy

Brings into play the concept of rational agents

If both A and B act rationally, each will try to maximize his payoff.
However, there is no guarantee that a player will act rationally. 



Frequency-dependent Fitness

Individuals have fixed strategies  that are known to other individuals in the population. 
Random interactions occur with other individuals (including those belonging to the same type) 

In the Biological Context 
strategy phenotype and                              payoff fitness

A component of Fitness of an individual is determined by the cumulative payoff to that individual 
resulting from the encounter with other individuals of the same type as well as different types.
The population is updated every generation when individuals reproduce with 

Probability proportional to fitness

Fitness is a measure of reproductive success





Evolutionary Games

Competition between different types of individuals with frequency-dependent fitness can be thought 
of as a game in which each type employs a distinct strategy and gets a certain payoff in an encounter 
with another individual. 
Fitness is a measure of reproductive success and strategies that yield higher cumulative payoff, 
reproduce at a faster rate.

Consider a population with two types of individuals A and B whose fitness are fA and fB respectively.

Assuming linear dependence of fitness on frequencies xA ,xB ;
fA = a xA + b xB

fB = c xA + d xB

Can be written in matrix notation as f = Mx, f=[fA ,fB ]; x=[xA ,xB ]
where M is the payoff matrix. 

a b
c d

A B
A

B
M=

E(A,A)=a : Payoff to A when it interacts with another A
E(A,B)=b : Payoff to A when it interacts with B
E(B,A)=c : Payoff to B when it interacts with A

E(B,B)=d : Payoff to B when it interacts with another B

George Price John Maynard-Smith



Replicator (Deterministic) Dynamics

Case 1: a>c; b >d è Payoff to A > Payoff to B : A dominated B
Only one stable equilibrium solution exists. 

Case 2: a<c; b<d è Payoff to B > Payoff to A : B dominates A
Only one stable equilibrium solution exists. 

Case 3: a>c; b<d è

3 equilibrium solution exists; A and B are bistable, mixed-state solution is unstable. 

Case 4: a<c; b>d è

Only one stable equilibrium solution exists. A & B stably co-exist. 

x=0, 1 are unstable equilibrium solutions. 

A B
x=1 x=0

A B
x=1 x=0

! = 0, 1, (d−b)/{(a−c)+(d−b)}

A Bx
x=1 x=0! = (d−b)/{(a−c)+(d−b)}

! = 0, 1, (d−b)/{(a−c)+(d−b)}

A B
x=1 x=0

x
! = (d−b)/{(a−c)+(d−b)}



Nash Equilibrium

A strategy is said to be a Nash Equilibrium if the person adopting the strategy cannot 
increase his payoff by changing to a different strategy. 

A is a strict Nash Equilibrium if a > c

A is a Nash Equilibrium if a ≥ c 

B is a strict Nash Equilibrium if d > b

B is a Nash Equilibrium if d ≥ b 

For a strategy to be a strict Nash Equilibrium, the payoff of the person adopting that 
strategy must decrease if he changes the strategy. 

Evolutionarily Stable Strategies (ESS)

Consider a large population of individuals employing strategy A. If a mutant employing strategy B  is 
introduced into the population, can the mutant invade the population consisting primarily of 
A-type players? 

In the infinitely large population size limit, let the number of B mutants (invaders) be infinitesimally 
small with frequency given by xB =ε . Frequency of A’s: xA =1- ε

fA = a (1- ε) + b ε ; fB = c (1- ε) + d ε

B cannot invade A only if fA > fB i.e. a (1- ε) + b ε > c (1- ε) + d ε

Since ε is very small, neglecting terms of order ε gives a>c è E(A,A) > E(B,A)

If however, a=c, fA > fB gives b>d è E(A,B) > E(B,B)

Definition: Invasion Probability of B (in finite populations): Probability that a single B mutant in a 
population of (N-1) A-type individuals eventually gets fixed in the population i.e. the final population 
consists entirely of B.



General Condition for Nash Equilibrium and ESS in games with more than two strategies

Strategy Sk is a strict Nash equilibrium if E(Sk , Sk ) > E(Si , Sk ); i≠k

Strategy Sk is a Nash equilibrium if E(Sk , Sk ) ≥ E(Si , Sk ); for all i≠k

Strategy Sk is an ESS if for all i≠k
either E(Sk , Sk ) > E(Si , Sk )
OR
E(Sk , Sk ) = E(Si , Sk ) & E(Sk , Si ) > E(Si , Si )

If a strategy satisfies the conditions for either strict Nash equilibrium or ESS, it implies that the 
strategy cannot be invaded by a mutant strategy. 



Pictorial representation of the Simulation of Moran Process: Neutral Evolution Case

A-type B-type

Time=t

Time

A picked for reproduction &  B for death

#A #B

nA nB

Time=t+1 nA+1 nB-1

Suppose RN1=6 ; RN2=4

Pick Random members 



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

A-type B-type

Time=1

Time

B picked for reproduction

Parent pop. Array (P) 

Time=1 Offspring pop. Array (O)

Suppose RN=3

Pick  a Random member 

Compare with <fitness> for reproduction: Pick RN between 0&1. If RN < normalized_fitness of B, then OK 

OK

Not OK

B becomes the seventh member of the Offspring pop. at t=2 

B becomes the seventh member of the Offspring pop. at t=1 

Offspring population at t=1 becomes the parent population t=2

Evolution by Moran Process

A picked for death at random

Parent pop. Array (P) Time=2

Repeat above steps to generate the parent population t=3 and so on

Note: If fitness of A is r1 and fitness of B is r2, 
normalized_fitness_of_A=r1/(r1+r2);  normalized_fitness_of_B=r2/(r1+r2)



Pictorial representation of evolution via mutation and selection

A-type B-type

Time=1

B picked for reproduction

Offspring pop. Array (O) 

Time=2 Parent pop. Array (P)

Suppose RN=3

Pick  a Random member 

Compare with fitness for reproduction: Pick RN between 0&1. If RN< normalized_fitness_of_B, then OK 

OK

Not OK

B becomes the second member of the Offspring pop. at t=2 

B becomes the second member of the Offspring pop. at t=2 

Repeat above steps to fill up the parent pop. at t=2 

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

Offspring pop. Array (O) at t=2

Parent pop. Array (P) at t=3 

Copy 

Evolution by updating whole population every generation

Copy parent pop. to offspring pop.Time=1

Time=1 Offspring pop. after mutationsè mutations

normalized_fitness_of_B = f1/(f0+f1) 



Hawk-Dove Game

(b-c)/2 b
0 b/2

H D
H

D
M=

Hawk (H) strategy escalates the fight at the cost of injury

Dove (D) strategy initially threatens but eventually backs off, avoiding injury, but getting a 
lower payoff

When two Hawks interact, each has an equal probability of winning the resource (b) but 
also an equal likelihood of loosing and getting injured (c)

è Expected payoff to each Hawk : E(H,H) = (b-c)/2

When two Doves interact, each has an equal probability of winning the resource (b) but 
also an equal likelihood of loosing and not getting anything. 

è Expected payoff to each Dove : E(D,D) = b/2

Assumptions

There is no fitness difference within the Hawk population è all Hawks are equally capable. 
The same is true for Doves.

Both players arrive at the resource simultaneously and there is no time-lag in the behavioral 
response of the two players.



Hawk-Dove-Retaliator Game

Given an initial frequency of H,D,R, what is the final equilibrium state of the system ?
Under what conditions can one strategy invade the others ?

Key Questions

Retaliator plays Hawk against Hawk, but plays Dove against Dove and other Retaliators

Sub-Population Dynamics
Are Retaliators stable against invasion by Hawks ?

Are Doves stable against invasion by Retaliators ?

Can a small frequency of Hawks invade a mixed population of Doves & Retaliators ?

Can a small frequency of Retaliators invade an equilibrated mixture of Doves & Hawks ?

The frequency of all three strategies can be 
represented by a point in the Simplex S3.
The length of the perpendicular drawn from the 
point to one face of the simplex gives the frequency 
of the strategy that is occupying the vertex 
opposite to that face.



Hawk-Dove-Retaliator Game

Given an initial frequency of H,D,R, what is the final equilibrium state of the system ?
Under what conditions can one strategy invade the others ?

Key Questions

Retaliator plays Hawk against Hawk, but plays Dove against Dove and other Retaliators

Sub-Population Dynamics
Are Retaliators stable against invasion by Hawks ?

Are Doves stable against invasion by Retaliators ?

Can a small frequency of Hawks invade a mixed population of Doves & Retaliators ?

Can a small frequency of Retaliators invade an equilibrated mixture of Doves & Hawks ?

Yes!

Yes! iff xR < b/(b+c); when b < c
No! 

Yes!

The frequency of all three strategies can be 
represented by a point in the Simplex S3.
The length of the perpendicular drawn from the 
point to one face of the simplex gives the frequency 
of the strategy that is occupying the vertex 
opposite to that face.



Mapping of Frequencies onto a Simplex

Represents initial frequencies in the population

Represents final equilibrium frequencies in the population

Trajectories show how the frequencies change over time & attain the final equilibrium state for 
different initial conditions.



Mapping of Frequencies onto a Simplex

Arrows show how the frequencies change over time & attain the final equilibrium state
Coloured contours indicate how fast the frequencies are changing in the region. 
red-fastest, blue-slowest

Represents stable equilibrium state

Represents unstable equilibrium state

red-fastest rate of change
blue-slowest rate of change

Generated by Dynamo3S



Hawk-Dove-Bourgeois Game

Bourgeois (B) plays Hawk when it arrives first and claims ownership of the resource but 
plays Dove when it arrives later to claim the resource

Asymmetry in claiming the resource: Relaxing the assumption of simultaneous claim to the resource

Can a small frequency of Bourgeois invade an equilibrated mixture of D & H ?

Key Question

Yes! iff b < c

Conclusions

Which strategy is an ESS depends not just on the payoff it receives when it interacts with a 
different strategy but also on the outcome of its interaction with itself and on the frequency

H D B

H

D

B

M=

(b-c)/2 b b/2+(b-c)/4

0 b/2 b/4

(b-c)/4 b/2 + b/4 b/2



A-type B-type

Time=1

B picked for reproduction

Offspring pop. Array (O) 

Time=2 Parent pop. Array (P)

Suppose RN=3

Pick  a Random member 

Compare with fitness for reproduction: Pick RN between 0&1. If RN< normalized_fitness_of_B, then OK 

OK

Not OK

B becomes the second member of the Offspring pop. at t=2 

B becomes the second member of the Offspring pop. at t=2 

Repeat above steps to fill up the parent pop. at t=2 

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

Offspring pop. Array (O) at t=2

Parent pop. Array (P) at t=3 

Copy 

Evolution by updating whole population every generation

Copy parent pop. to offspring pop.Time=1

Time=1 Offspring pop. after mutationsè mutations

normalized_fitness_of_B = f1/(f0+f1) 

Pictorial representation of evolution via mutation and selection (Error Threshold Simulation)





P2P1

Prisoner’s Dilemma

v Both prisoner’s can cooperate (C) with each other by remaining silent

v P1 can cooperate by remaining silent but P2 can defect (D) by confessing 

v P1 can defect (D) by confessing but P2 can cooperate (C) by remaining silent

v Both prisoner’s defect (D) by confessing

a b
c d

C D
C

D
M=

What should your advise be ?

a=-1, b=-5, c=0,  d=-3



Prisoner’s Dilemma

Which is the best strategy for a prisoner to adopt that would minimize his jail-term ? 

AIM

To understand how cooperation can be sustained in an environment where 
individuals are always trying to maximize their benefits and minimize their costs ? 

Cooperation is an emergent phenomenon

Cooperation/Altruistic behavior comes with a cost as well as a benefit !



Prisoner’s Dilemma

Consider the Payoff Matrix
a b
c d

C D
C

D
M=

a<c, d>b & a>d

Note: D is a strict Nash equilibrium as well as an ESS. 

A mixed population consisting primarily of cooperators and a very small 
fraction of mutant defectors will eventually be invaded by the Defectors. 

a>dè better for both to cooperate than defect



Direct Reciprocity : The game is not just played once but repeated several time between the same two 

players. Each player can adopt many distinct strategies specified by the sequence of cooperate (C) or defect 

(D) moves. The sequence of C and D moves of a player can be informed by the corresponding 
set of moves by his opponent. The payoff for each encounter is noted and the cumulative payoff is 

calculated at the end of the game by adding the payoffs for each encounter. 

What is the strategy (i.e. sequence of C,D moves) that will maximize the payoff ?

Suppose the game is played for m rounds. a=3, b=0, c=5, d=1

You - GRIM: CDDD…..D

Me - ALLD:  DDDD….D

What is the payoff that you and I get after m rounds of the game ?

A critical number of rounds mc=2 has to be played before the more cooperative strategy GRIM becomes 

stable against invasion by more selfish strategy ALLD. If m > mc and both you and me play GRIM, then 

neither of us can increase our payoff by changing to ALLD.

ALLD is also an ESS since md > b + (m-1)d è d>b

è ALLD is also stable against invasion by GRIM

Problem with fixed #rounds: No incentive to cooperate in the last round of the game.

Can a cooperative strategy be stable against invasion by selfish agents (defectors) ?



When a more selfish strategy than GRIM emerges, it can invade a population of GRIM players. 
Consider the strategy GRIM*: Cooperate as long as your opponent cooperates but defect in the last round 
of the game
You – GRIM (): CCCC….C
Me – GRIM* ():    CCCC….D

However, GRIM** (a more selfish strategy than GRIM*) which cooperates in m-2 rounds but defects in 
the last two rounds of the game can invade GRIM*
Always possible to find a more selfish strategy which defects one round before the opposing strategy which 
can invade the opposing strategy i.e. GRIM è GRIM* è GRIM** è ……ALLD

A cooperative strategy will always be eliminated from the population L

The number of rounds is not always known. Let w be the probability that another round is played after one 
round is completed. 
The probability that the game is over after one round is 1-w

Expected number of rounds played : 
w

m
-

=
1
1



What is the best strategy in a repeated Prisoner’s Dilemma game and is it possible 
to find such a strategy from a space of many different strategies ? 

Can a cooperative strategy emerge and invade a population of selfish agents ?

Does the outcome of the competition depend on the presence of other strategies 
in the population ? 

Key Questions in the Evolution of Cooperation



Two possible classes of strategies exist:

Deterministic Strategies: Given the sequence of C and D moves that have been played in the previous 
rounds of the game, a deterministic strategy specifies which move to play in the current round of the game. 

Stochastic Strategies: Given the sequence of C and D moves that have been played in the previous 
rounds of the game, a stochastic strategy specifies the probability of a C or D move in the current round of 
the game. 

For m=1, the strategy space is 4-D and all 16 strategies can be represented by the vertices of a 4-D 
hypercube. 
For m>1, the strategy space is 4m dimensional with each deterministic strategy corresponding to the vertex 
of a 4m dimensional hypercube. There are 24^m such strategies. 

For deterministic strategies, the strategy space is discrete and changing from one strategy to another is 
equivalent to moving from one vertex of the 4m dimensional hypercube to another.

For stochastic strategies, the strategy space is continuous since the probability of a C move can vary 
continuously from 0 to 1. The vertices of the strategy hypercube then correspond to cooperating with 
probability 1 or 0. 

Strategy Space



Evolutionary Game of Thrones : Axelrod’s 1979 Tournament

People were invited to send in strategies in the form of computer program that would 
decide whether to play C or D in PD game with another strategy 

Each strategy was made to interact with itself as well as every other strategy in the 
population.

The average payoff  for each strategy was calculated every generation as a result of these 
interactions.

The population of strategies in the next generation was updated by selecting strategies 
from the current generation with a probability proportional to the average payoff  (fitness) 
for each strategy.

The best strategy was the strategy that took over the entire population. 

15 strategies (including ALLC and ALLD) were submitted in the first tournament and 63 in 
the second tournament. 

In both tournaments the winner was TFT

Result



Drawbacks of TFT
Susceptibility to Mistakes: Two players playing TFT can end up with a very low payoff when one of 
them accidentally changes her strategy from C to D. 

You: C C C C D C D C D C D

Me:  C C C C C D C D C D C

A mistake on your part resulting in changing your move from C to D in the fifth round of the game will 
change the state from mutual cooperation to alternating rounds of cooperation and defection and lead to a 
very low net payoff for both players.

Payoff for a TFT player in the presence of a small amount of behavioral noise is 

E(TFT,TFT) = (a+b+c+d)/4  < a since a> (b+c)/2 and a>d

TFT is susceptible to invasion by ALLC by random drift which is susceptible to invasion by ALLD
A population of TFT players can eventually be invaded by ALLD players.  

TFT ALLC ALLD

Random Drift



Average Payoff to each strategy in an iterated PD game between two strategies

How does the average payoff to TFT and ALLD change as the number of rounds increases ? 
Questions to Consider

Is there any difference in the average payoff behaviour in TFT vs TFT compared to TFT vs
TFTT, TFT vs ALLC, ALLC vs ALLC ?

Is there any difference in the average payoff to ALLD in TFT vs ALLD compared to TFTT vs
ALLD ? How does the average payoff to ALLD change as the number of rounds increases ? 

Compare the average payoff to ALLD & RANDOM in ALLD vs RANDOM with the average 
payoff to TFT & RANDOM in TFT vs RANDOM after several rounds of the game ?

Which strategy TFT or ALLD gets a higher average payoff against RANDOM ?
In which game does RANDOM get a higher average payoff ? 
Compare the average payoff to ALLD in ALLD vs RANDOM and ALLD vs TFT games.

The average payoff to each strategy depends on other strategies present in the population

shows how

Use the adjacent NetLogo program to answer the following questions



Average Payoff when different strategies interact in a finite population

There exists a finite population of distinct strategies

Each strategy interacts at random with itself or another strategy

The cumulative and average payoffs are calculated after each interaction

NOTE
There is no evolution of population structure since the total number of players playing a given 
strategy remains fixed. 

Shows how the average payoff to each strategy changes as a result of interaction with different 
strategies in the population.



(i) Resists invasion by a more selfish strategy

(ii) Does not suffer from the drawbacks of TFT 

Can a strategy be found that is more cooperative than TFT and 



Reactive Strategies
A Reactive strategy is a Stochastic strategy that takes into account the opponent’s last move to 
determine its move (C or D) in the current round. 
If the opponent cooperated in the last round, it chooses to cooperate with probability p and defect with 
a probability (1-p)
If the opponent defected in the last round, it chooses to cooperate with a probability q and defect with a 
probability (1-q)
The Reactive Strategy S(p,q) can be represented by a point in an unit square. The vertices of the unit 
square correspond to the deterministic strategies ALLD (S(0,0)); TFT (S(1,0));  ALLC (S(1,1)) and 
reverse of TFT (S(0,1))
The repeated Prisoner’s Dilemma between two reactive strategies is a Markov Chain on the state space 
(CC, CD,DC, DD).
A Markov chain is a system that undergoes transitions from one state to another among a set of finite and 
discrete states. Probability of finding the system in the next state depends only on the current state and not 
on past memory. 

My move Opponent’s Move
Last Round

C C
C D
D C
D D

State 1:
State 2:
State 3:
State 4:

For each of these states visited in the last round of the game, what is the probability that the current
round will be found in the states CC, CD, DC, DD ?

Current Round

My move

?
?
?
?



Algorithm for finding the Reactive Strategy with the highest cumulative payoff

1. Generate n distinct Reactive Strategies that are distinguished by n distinct set of values of 
(p,q). Start with an initial configuration in which all the reactive strategies have the same 
frequency 1/n 

2. Calculate the n x n payoff matrix E(S1*, S2*)

3. Use the replicator equation to study the evolution of population structure to determine 
which of the n strategies eventually remain in the population. 

4. Is there any cooperative strategy that is better than TFT in surviving against a selfish 
strategy like ALLD ?
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Competition between ALLD, TFT and ALLC
2=m

3=m

10=m

ALLD is the only ESS and x_ALLD è 1 for any non-zero initial values 
of x0_ALLD, x0_TFT, x0_ALLC

Both TFT and ALLD are an ESS

A small frequency of ALLD can invade TFT and ALLC if the frequency 
of x0_ALLC > xT_ALLC
xT

ALLC is the critical threshold value 
xT

ALLC increases as       increases m

Generated using Dynamo3S by Prateek Verma

( ) ( ) 2
( ) ( ) 2( 1)

T
ALLC

m a d d c m
x

m c d d c m
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* 1
( ) 2 2 1TFT

d b
x

m a d d b c m
-

= =
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ALLD vs TFT game:           decreases as         increasesm*
TFTx



Competition between ALLD, TFT and GTFT (without noise)

Obtained by solving the coupled set of replicator 
equations giving the time evolution of the frequencies 
of ALLD, TFT and GTFT
There is no behavioral noise in the system
GTFT cannot replace TFT 
ALLD cannot replace TFT unless x_TFT is very small
ALLD cannot replace GTFT unless x_GTFT is small

Represents stable equilibrium state

Represents unstable equilibrium state

red-fastest rate of change
blue-slowest rate of change

Arrows show how the frequencies change over time & attain the 
final equilibrium state

Coloured contours indicate how fast the frequencies are changing in 
the region. 

Generated using Dynamo3S by Prateek Verma



Competition between ALLD, TFT and GTFT (with noise)

GTFT can invade only in the presence of both TFT and ALLD provided x0_TFT is not very small
In a population consisting of only GTFT and ALLD, both strategies are an ESS
ALLD cannot replace GTFT unless x0_GTFT is small

Generated using Dynamo3S by Prateek Verma



Strategies with last round memory

These are Stochastic strategies which decide to cooperate or defect based on both player’s move in the 
last round of the game.  
Each strategy is characterized by the probabilities (p1,p2,p3,p4) for cooperating in the current round 
depending on whether the state in the last round was CC, or CD or DC, or DD.
Competition between two such strategies S1(p1,p2,p3,p4) and S2(p1’,p2’,p3’,p4’) in a repeated 
Prisoner’s Dilemma game is a Markov Chain on the state space CC,CD,DC,DD.
TFT: p1=p3=1, p2=p4=0. GTFT: p1=p3=1, p2=p4=1/3

Is GTFT still the best strategy (i.e. strategy with the highest cumulative payoff)  when 
strategies with last round memory are included ?

p1: Probability of me cooperating in the current round when the state of the game in the last round was CC
p2: Probability of me cooperating when the opponent defected in the last round i.e. the state was          CD
p3: Probability of me cooperating when the opponent cooperated in the last round i.e. the state was       DC

p4: Probability of me cooperating in the current round when the state of the game in the last round was DD

Probability definitions for Strategy S1

p1’: Probability of opp cooperating in the current round when the state of the game in the last round was CC
p2’: Probability of opp cooperating when the opponent defected in the last round i.e. the state was          DC
p3’: Probability of opp cooperating when the opponent cooperated in the last round i.e. the state was       CD

p4’: Probability of opp cooperating in the current round when the state of the game in the last round was DD

Probability definitions for Strategy S2

my move

my move

opp move



Strategies with last round memory

Algorithm for finding the Stochastic Strategy with last round memory having the 
highest cumulative payoff

1. Start with a homogeneous population consisting of a stochastic strategy defined by 

p1=p2=p3=p4=1/2 

2. Every 100 generations introduce a new strategy that is chosen from a random distribution 

of strategies.

3. Solve the eigenvalue equation with the new strategy to determine the probability of finding 

the game in one of the 4 possible Markov states at equilibrium. 

4. Using the replicator equation, evolve the system to check whether the new strategy 

becomes extinct or coexists with other strategies or gets fixed in the population by eliminating 

all other strategies. 

5. Is there any cooperative strategy that is better than GTFT in surviving against ALLD-like 

strategies ?

x xT=
1 2 1 2 3 4( , )E S S ax bx cx dx= + + +



Win-Stay, Lose-Shift (WSLS) Strategy

WSLS : p1=1,p2=p3=0,p4=1

Strategy : Cooperate when both cooperates or both defects in the last round; otherwise defect. 

WSLS strategy decides to keep playing the same move if it is winning i.e. getting a payoff of a or c but 
changes its move in the current round if it is loosing i.e. getting a smaller payoff of b or d in the last
round. 

WIN

My move
Opponent’s 

Move

My Payoff

My moveC

C

a

Last Round Current Round

C My move
Opponent’s 

Move

My Payoff

My moveD

C

c

Last Round Current Round

D

My move
Opponent’s 

Move

My Payoff

My moveC

D

b

Last Round Current Round

D My move
Opponent’s 

Move

My Payoff

My moveD

D

d

Last Round Current Round

C

LOSE



2. WSLS dominates ALLC in the presence of behavioral noise and therefore wont change to ALLC via 
random drift.

WSLS : CCCC D DDDD
ALLC : CCCC C CCCC

Error in WSLS increases its payoff and is maintained to exploit ALLC

1. WSLS has error correcting ability. Cooperate when both cooperates or both defects in the last round; 
otherwise defect. 

WSLS : CCCC D DCCC
WSLS : CCCC C DCCC

Advantages of WSLS Strategy

Error Error corrected because strategy is changed to increase payoff



3. Competition between WSLS and ALLD

WSLS : C D C D C D  C D
ALLD : D D D D D D D D

WSLS cooperates with ALLD in every other round

WSLS is stable against invasion by ALLD iff E(WSLS,WSLS)>E(ALLD,WSLS) è a > (c+d)/2

Note: ALLD is also an ESS since E(ALLD,ALLD)>E(WSLS,ALLD) è d>b which is always true

ma (m/2)(b+d)
(m/2)(c+d) md

WSLS

ALLD
M=

WSLS ALLD



Competition between WSLS and any two of ALLD, TFT, GTFT (with noise)

WSLS vs ALLD vs TFT

WSLS vs TFT vs GTFT

WSLS vs ALLD vs GTFT



Competition between ALLD, TFT, GTFT and WSLS (with noise)

WSLS dominates ALLC and resists invasion by ALLD

Generated using Dynamo4S by Prateek Verma



Dynamics in Strategy Space

Random

GTFTTFT

ALLD

WSLS

ALLC

?



For the Payoff Matrix
a b
c d

C D
C

D
M=

b<c and a>d
No. of C players = i
No. of D players = N-i

Games in Finite Populations

Prob. that C interacts with another C = (i-1)/(N-1)
Prob. that C interacts with another D = (N-i)/(N-1)
Prob. that D interacts with another C = i/(N-1)

Prob. that D interacts with another D = (N-i-1)/(N-1)

Expected payoff to C when it interacts with C = a(i-1)/(N-1)
Expected payoff to C when it interacts with D = b(N-i)/(N-1)

Total expected payoff for C : Fi = (a(i-1)+b(N-i))/(N-1)
Total expected payoff for D : Gi = (ci+d(N-i-1))/(N-1)

Define fitness of C as : fi = 1- w + w Fi ; fitness of D as : gi = 1- w + w Gi

w=1 è strong selection; fitness completely determined by interactions
w=0 è no selection between C & D
w<<1 è weak selection

f1>g1 è F1>G1 è b(N-1) > c + d(N-2)
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1
>rIn the limit wè0, leads to the inequality 

a(N-2) + b(2N-1) > c(N+1) + d(2N-4) which in the limit N>>1,reduces to a + 2b > c + 2d 

Moran Process in Games in Finite Populations
C’s and D’s are picked for reproduction with a probability proportional to their mean fitness and for death 
randomly.

Probability of picking C for reproduction and D for death : 

Probability of picking D for reproduction and C for death : 
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Nc is the minimum size of the population necessary for selection to favour fixation of cooperators



If a>c and b>d, C is a strict Nash equilibrium as well as an ESS and selection will always favour fixation of 
C and oppose fixation of D in a finite population of any size.

If a>c and b<d, both C and D is an ESS.  According to the infinite population analysis, a small fraction of 
C mutants cannot invade a population consisting predominantly of D players.
What happens for finite populations ?
Fixation of C will be favoured by selection only if            even if F1>G1 è N>Nc

Fixation of D can still be favoured even if F1>G1 provided           è N<Nc

Condition for a strategy to be an ESS has to be modified for finite populations. 
In a finite population of size N, a strategy C is an ESSN if 
(i) A single mutant of any other strategy has lower fitness than C 
(ii) The fixation probability of every other strategy must be smaller than the fixation probability of a 

neutral strategy and the fixation probability of C must be larger than the fixation probability of a 
neutral strategy 

C is an ESSN if F1>G1 and            and

D is an ESSN if G1>F1 and            and

NC

1
>r ND

1
<r

ND

1
>r NC

1
<r

Evolutionary Stability in Finite Populations
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C Dx

x*=1/3 x*=2/3

x*=1/2

NC

1
>r

ND

1
<r

NC

1
<r

ND

1
<r

NC

1
<r

ND

1
>r

rr DC
> rr DC

<

x=1 x=0

Fixation Probabilities and the 1/3 Law for w<<1 and N>>1 

x -- Unstable mixed state equilibrium

Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and 

d>b then which strategy has a higher fixation probability ?

C is Risk Dominant if                      è a + b > c + d    when w<<1 and N>>1

D is Risk Dominant if 

A strategy is Risk Dominant if the total payoff for that strategy is larger than the total payoff for every other 

strategy.

The Risk Dominant strategy has a greater fixation probability in the limit w<<1 and N>>1

rr DC
>

rr CD
>



TFT can Invade ALLD in a Finite Population 

For the Payoff Matrix
ma b+(m-1)d

C+(m-1)d md

TFT

ALLD

M =
No. of TFT players = i
No. of ALLD players = N-i
c>a>d>b

TFT                  ALLD

According to the infinite population analysis,  for m > (c-d)/(a-d), both TFT and ALLD are an ESS and 
each strategy is stable against invasion by either strategy.

In finite populations, TFT can get fixed in the population even if FTFT < GALLD provided  NTFT

1
>r

If Fi and Gi is the fitness of i TFT and (N-i) ALLD players,

F1 = FTFT =b+(m-1)d and G1=GALLD=(c+(m-1)d + md(N-2))/(N-1)
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when a=3, b=0, c=5, d=1

When N=2, m>∞,             When N=3: m>10 When N=4: m>6



For fixed m,                  gives a lower bound on N:  
NTFT
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Evolutionary Graph Theory 
Questions

• How does the fixation probability of a mutant change when the population is structured i.e. only 
certain members of the population can replace others during the course of evolution. 

• If a structured population is represented by a graph, with vertices representing members and 
edges representing interaction between corresponding members, is it possible to characterize all
graphs that have the same evolutionary dynamics. 

• Can certain structured populations increase the fixation probabilities of advantageous mutants ?
• Can certain structured populations eliminate the effect of selection ? 

Unstructured Population Structured Population 

i

j

k

There is an edge between any two vertices
All edges have the same weight

Not all vertices are connected by an edge
The edges can have different weights
i can replace j and j can replace i

k can replace i but i cannot replace k



Structured Population 

i

j

k

A graph (network) can be completely specified by a stochastic matrix W=[wij] 

W=[wij] is an N x N stochastic matrix that determines the probability of replacing the j’th
member of the population by the i’th member.

wij =0 if there is no directed edge from i to j è offspring of i cannot replace j 

Formulating Evolution on Networks 

Structured Population 

i

j

k

Population composition changes as the population evolves but the rules for replacement via the 
Moran process remain the same. 

Evolution 

å
=

=
N

j
ijw

1
1 since the i’th member picked for reproduction has to replace someone



Directed Cycle

Fixation Probability of a mutant that arises in a structured population

The i’th member can only be replaced by the 
member preceding it i.e the (i-1)th member.

Fitness of B (blue) = r
Fitness of A (red) = 1

Due to the nature of the structured population (only nearest neighbour replacements are 
allowed), there can be only one cluster of B’s. Fragmentation of clusters into two or more sub-
clusters is not possible. 

Fixation probability of B on a directed cycle is identical to the fixation probability of B in the 
Moran process (unstructured population)
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LineFixation probability of a mutant randomly placed on a “Line” graph

Rules of Replacement: Every member is replaced only by the 

member preceding it. The last member replaces itself.

If the mutant B arises at any position other than the first position 

in the line, it will be replaced by A and become extinct.

Probability that B arises in any positions from i=2…N

is  (N-1)/N since there are N-1 such positions. 

Probability that B appears in position 1: 1/N

The mutant B will definitely be fixed if it arises in position 1

Fixation probability of B:  

Fixation probability differs from the Moran process and is 

independent of the fitness of members.

NB

1
=r



Burst

Invasion probability of a mutant randomly placed on a “Burst” graph

Rules of Replacement: Every member is replaced only by the 
member at the centre with equal probability. The central member 
cannot be replaced by any other peripheral member or itself.

If the mutant B arises at any position other than the central
position in the star, it will be replaced by the A at the centre and 
become extinct.

Probability that B arises in any positions from i=2…N
is  (N-1)/N since there are N-1 such positions. 

Probability that B appears in the central position: 1/N

The mutant B will definitely be fixed if it appears at the centre of 
the star

Invasion probability of B:  

Invasion is independent of the fitness of members and equivalent 
to that of a neutral mutant in the Moran process.

NB

1
=r

Both the “Line” and ”Burst” graphs are suppressors of selection



Graphs which are suppressors or amplifiers of selection

If the fixation probability of a single mutant with a relative fitness r on the structured graph G is rG

NB r
r
/11
/11

-
-

=r Invasion probability of a single mutant with a relative fitness r in a Moran process

rr BG
>If                     when r>1 è G is an amplifier of selection. G favours selection over drift

If                     when r>1 è G is an suppressor of selection. G favours drift over selectionrr BG
<

If                     when r>1 è G is the strongest possible suppressor of selection.
NG

1
=r

All Graphs with a single root have the same invasion probability: NG

1
=r



The Isothermal Theorem

Isothermal Graph: All vertices have the same temperature è

Isothermal Theorem: The fixation probability of a single mutant on a graph G is equivalent to the 
fixation probability on an unstructured graph (Moran process) iff G is an isothermal graph. 
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Alternative way to represent evolutionary dynamics on Graphs

Structured Population 

i

j

k

Instead of picking a vertex for reproduction and another vertex (which it can replace) for death

Pick an Edge (ij) with probability proportional to (wij x f_i)

f_i - fitness of the member at vertex i

Arrows are no longer necessary: weight wij contains information about which member replaces which

W=[wij] need not be a stochastic matrix. wij can be any non-negative number 

Structured Population 

i

j

k
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Fixation probability is same as that of a Moran Process in unstructured populations if the graph is a circulation i.e.

åå =
j

kj
j

jk ww

Every Isothermal graph is a Circulation but not every Circulation is Isothermal



Star

Graph with multiple roots
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Star Graph is an amplifier of selection: For r>1, a single mutant with relative fitness 

r has a higher fixation probability that is equivalent to the fixation probability with 

relative fitness r2 in a Moran process (unstructured graph) in the limit of large N

A compartmentalized graph which has a complete sub-graph is a suppressor of 

selection: For r>1, a single mutant with relative fitness r has a lower fixation 

probability than the corresponding fixation probability in a Moran process 

(unstructured graph). 

N=N1+N2 ; where N1 is the size of the complete (unstructured) sub-graph and N2 

is the size of the second component.  

A single mutant B appearing in a graph with multiple roots can never get fixed 

since it cannot replace A located in one or more of the multiple roots. 

If a mutant appears at one of the roots, the lineage generated can never become 

extinct. Allows coexistence of both A and B in the population.

A root is a vertex with no edge pointing to it 

N2

N1



The Funnel graph is a strong amplifier of selection

The Funnel graph has k+1 layers labelled j=0,1,…k

The zeroth layer has just one vertex and the layer j has m^j vertices

Edges originating from vertices in layer j lead to vertices in layer j-1

Edges originating from the single vertex in the layer j=0 lead back to vertices in the layer j=k

In the limit of large k and large m,  

1®rG
for r>1 for r<10®rG

Reference: Lieberman, Hauert, Nowak; Evolutionary Dynamics on Graphs, Nature 2005 



Evolution of Cooperation on Graphs

q Caley Tree/Bethe Lattice 

v Regular graph with each node having k neighbours

v Graph does not have any loops 

q Theoretical analysis valid for

v N>>k

v Weak selection limit holds i.e. w<<1 when separation of time-scales is possible

v Uses the pair approximation which is valid only for Bethe lattices i.e. graphs without 
any loops.

Pair Approximation è frequencies of larger clusters obtained from pair frequencies

Caley Tree/Bethe Lattice with k=3

Image Source: WikipediaConstraints on the Theoretical Formulation



Evolution of Cooperation on Graphs

Relations between stochastic variables for evolution of cooperation on graphs

| | | |

|

| |

| |

| | | |

1 1
1; 1

(1 )
(1 )(1 )

(1 )( )
1

A B B A

A B B B B A A A

AA A A A

AB A B B A B A

BB B B B A B A

A
BA AB B A A A B B A B A A

A

p p p p
q q q q
p q p
p q p q p
p q p q p

pp p q p q p q q
p

+ = Þ = -
+ = + =

=

= = -

= = - -

= Þ = Þ = -
-

Only 2 of the 6 stochastic variables are independent: ;A AAp p

AIM: Obtain dynamical equations in terms of these variables and solve them under certain 
approximations to obtain the condition for the fixation probability of A (     ) > 1/N  Ar

Key approx.: Pair frequencies equilibrate in a much faster time-scale than individual frequencies
in the weak selection limit (w<<1)



Illustration of the Death-Birth Process : Updating a B-player

Focal player selected for death is B

A-neighbour of focal B selected to replace B has payoff: | |3 3A A A B AP b q a q b= + +

B-neighbour of focal B not selected to replace B has payoff: | |3 3B B B A BP d q d q c= + +

1A Af w wP= - + : Fitness of A-neighbour of focal B 1B Bf w wP= - + : Fitness of B-neighbour of focal B

Probability that          replaces the  focal          : A A

A A B B

k f
k f k f+

k=4



Illustration of the Death-Birth Process : Updating an A-player

Focal player selected for death is A

A-neighbour of focal A not selected to replace A has payoff: | |3 3A A A B AP a q a q b= + +

B-neighbour of focal A selected to replace A has payoff: | |3 3B B B A BP c q d q c= + +

1A Ag w wP= - + : Fitness of A-neighbour of focal A 1B Bg w wP= - + : Fitness of B-neighbour of focal A

Probability that          replaces the  focal          : B B

A A B B

k f
k f k f+

k=4

; 4A Bk k+ =



Condition for Spread of Cooperation on Networks

Death-Birth (DB) updating:                         è
1

C DNr r> > b k
c
>

Imitation (IM) updating: Payoff of focal individual being updated also matters.

Focal individual (F) compares her fitness with her neighbours. 

F retains her strategy if f_F > f_neighbour (neighbour is randomly selected)

F imitates neighbour with probability proportional to neighbour’s fitness if f_F<f_neighbour

f_F = 1-w+w(kAc+kBd)  where f_F: fitness of the Focal B-player with kA A-neighbours and kB B-neighbours

Probability that a focal B-player adopts the strategy of an A-neighbour: 

Compare with

Probability that a focal B is replaced by an A-neighbour in Death-Birth updating:

g_F = 1-w+w(kAa+kBb)  where g_F: fitness of the Focal A-player with kA A-neighbours and kB B-neighbours

Probability that a focal A-player adopts the strategy of a B-neighbour: 

1
C DNr r> > è 2b k

c
> +

Ratio of Benefit to Cost of cooperation determines whether selection favours spread of cooperation and fixation 

of cooperators 

A A

A A B B F

k f
k f k f f+ +

B B

A A B B F

k g
k g k g g+ +

Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

A A

A A B B

k f
k f k f+



Condition for Spread of Cooperation on Networks

Birth-Death (BD) updating:
1

D CNr r> > Selection never favours fixation of cooperators 

Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

Arrow indicates b/c=k. Theoretical Prediction : b/c > k è
1

C DNr r> >

v Discrepancy with theoretical prediction observed for non-regular graphs
v Discrepancy increases with increasing k but decreases with increasing N



Evolutionary Games on Networks with Dynamic Linking

Two Relevant Time-Scales

Time-Scale of Linking Dynamics: Time-Scale of Strategy update Dynamics:at et

a et t>> a et t<<

Links equilibrate before strategy updates occurEffectively Static Network

Ref: Active Linking in Evolutionary Games; JTB 243(3):437-4443 (2006)





Spatial Games 

Rules for Deterministic Spatial Games

1. The payoff to each player is given by the total 

payoff obtained by playing each of its eight 

neighbours. 

2. Rules for updating a cell are deterministic: The focal 

(central) cell is replaced either by itself or one of the 

eight neighbouring cells (Moore neighbourhood)

depending on which has the highest payoff. 

3. All cells are updated simultaneously (synchronous 

updating) 

4. Periodic boundary condition is used to ensure all 

cells are treated in the same way and there are no 

boundary effects. 

The survival of a cell depends on its own strategy, the strategy of 

its eight neighbours as well as the strategies of their neighbours

è 25 cells in all

As eè0, the focal cell (D) has a total payoff = 4b since it is 

surrounded by 4 C’s and 4 D’s.

If 4b>7, central cell remains a Defector in the next generation

If 4b<7, central cell transforms from Defector to Cooperator in 

the next generation

Cooperator Defector a=1,b=0,c=b,d=e

4b b

2b

2b4b

47

5

3

b-Measure of benefit gained from exploiting an 

altruistic partner relative to the benefit gained from 

cooperating with an altruistic partner



The Moore and Von-Neumann Neighbourhood 

4b b

2b

2b4b

47

4

3

Rules for updating a cell: The focal (central) cell is 
replaced either by itself or one of the four
neighbouring cells (Von-Neumann neighbourhood) 
depending on which has the highest payoff.
The cells diagonally adjacent to the focal cell are 
not part of the neighbourhood. 

2b 0

2b

2

3

5-cell Von-Neumann neighbourhood

4b b

2b

2b4b

47

4

3

7

Rules for updating a cell: The focal (central) cell is 
replaced either by itself or one of the eight 
neighbouring cells (Moore neighbourhood) 
depending on which has the highest payoff.
The cells diagonally adjacent to the focal cell are 
also part of the neighbourhood. 

9-cell Moore neighbourhood 



100x100 Lattice 

Initial Condition: Half the cells are randomly 
chosen to be cooperators and remaining half as 
defectors.

Colour Code:
Blue : C that was C in the previous generation.
Green: C that was D in the previous generation.

Red: D that was D in the previous generation.
Yellow: D that was C in the previous generation.

b=1.10: Oscillation from isolated single defectors 
to squares of 9 defector and then back to single 
defector. 

b=1.24: Larger lines of still mostly disconnected 
defectors are observed.

b=1.35: Lines of defectors now form a network 
with oscillating islands (yellow and green 
regions) around lines of defectors.

b the only parameter determining the evolution of 
the spatial distribution of C’s and D’s



b=1.55: Mostly static network of defectors in 
large islands of cooperators.

b=1.65: Defectors have attained majority by 
replacing most of the cooperators.  Configuration 
with dynamic clusters of cooperators seen. 

b=1.70: Static pattern showing a few clusters of 
cooperators in a sea of defectors. Lines of 
defectors now form a network with oscillating 
islands (yellow and green regions) around lines 
of defectors.



What is the likelihood that a single Defector mutant will take over a population consisting of Cooperators ?

If 7<8b<8, cell in the middle will remain C
If 8b>8, cell in the middle will become D, single D in the 
centre expands to give a cluster of 9 D’s.

8

7

8b

9D

5b<6: Red 
cell with 
payoff 5b 
is replaced 
by blue 
cell with 
payoff 6:
9Dè1D

7>5b>6: Red 
cell at the 
corners with  
payoff 5b 
replaced by 
blue cell with 
payoff 7:
9Dè5D

8>5b>7: 9D 
configuration 
remains 
unchanged
9Dè9D

5b>8: Blue 
cell with  
payoff 7 
replaced by 
red cell with 
payoff 5b:
9Dè25D



A single cooperator can never survive in a population of defectors and is 
immediately eliminated. 
Cooperators can only survive in clusters. 

Sometimes the cluster of cooperators can grow in size.

9C

2b<3: Red 
cells with 
payoff 
2b,3b are 
replaced by 
blue cells 
with payoff 
3,5:
9Cè25C

3/2<b<5/3: 
Red cell with  
payoff 3b 
replaced by 
blue cell with 
payoff 5: C
cluster expands 
along central 
axis but not 
along diagonals
9Cè21C

b>8/3: 9C 
cluster 
disappears
9Cè0C

5/3<b<8/3: 
9C configuration 
remains 
unchanged
9Cè9C

4

0 b

b

bb

bb

b

b



(i) b<8/5: Only C clusters keep growing; Cooperators dominate
(ii) b>5/3: Only D clusters keep growing; Defectors dominate
(iii) 8/5<b< 5/3: Both C and D clusters keep growing; Co-existence between cooperators and defectors

In (i) and (ii), final frequency of cooperators and defectors depends on the initial configuration.
In (iii) final frequency is independent of initial configuration. The pattern is dynamic but the final 
frequency remains nearly constant at 30% cooperators è Dynamic Equilibrium

b-dependence on Spatial Evolution of Cooperators and Defectors

Dynamical Fractals and Evolutionary Kaleidoscopes

For 8/5<b<5/3, configuration starting from a single defector shows repetitive (fractal-like) patterns.
A single D grows to form a 3x3 square.
If 5b>8, D wins at the corners and red cell with payoff 5b replaces the blue corner 

cell with payoff 7
If 3b<5, C wins along lines and red cell with payoff 5b is replaced by blue cell with
payoff 5
If 8/5<b<5/3 è 1.6<b<1.67, C wins along lines but loose along irregular boundaries.





Two walkers can collide and generate two large clusters of cooperators.
A walker is a cluster of 10 cooperators moving in a direction shown by the arrow.

Invasion by Cooperators

3b<5 since b<5/3
è 2b<5
2b>3 since b>1.6 implies
C[payoff=1]èD



Parameter region: 3/2<b<8/5
Initial Configuration: Single cluster of 3x3 C’s

Parameter region: 8/5<b<5/3
Initial Configuration: Single cluster of 3x3 C’s

Increasing b



A structured population can facilitate survival and sustenance of cooperators
even under conditions that are unfavourable for their survival in a mixed-
population scenario

Cooperators survive by forming clusters (è strength in numbers) and the 
growth or shrinkage of the clusters depend on interactions at the boundary of 
the cluster

The greater the advantage, the lesser is the likelihood of survival of 
cooperators even in structured populations

The extent of survival and spread of cooperators depend on the relative 
advantage that a selfish agent has over a cooperator/altruist 

Summary



Connection between ABS models and Stochastic Reaction-Diffusion Models

Results of an SRDE model are completely consistent with that of the ABS model for 
moderate to large population size (N)

Fully Stochastic Agent-Based Simulation Models

Stochastic Reaction-Diffusion (SRDE) Models

Sometimes an exact correspondence exists

Exact correspondence

Correspondence can be established for a Rock-Paper-Scissors Game

A useful framework for understanding the conditions for multi-species coexistence in an ecosystem 



Rock Paper Scissors: 3x3 Game with Cyclic Domination
(Example of an Evolutionary Game with non-transitive interactions)

Det[A]>0 è a1a2a3<b1b2b3

Det[A]<0 è a1a2a3>b1b2b3



C - colicin producing E.coli

S - colicin sensitive E.coli

R - colicin resistant E. coli 

Local vs Global Update Dynamics

1. Focal lattice site (F) chosen at random

2. If F is empty, it is filled with a cell of type i=C or S or R from its local
neighbourhood (8 nearest neighbours surrounding F) or global
neighbourhood (anywhere in the lattice except the focal site) with a 
probability proportional to fraction (f_i) of cell-type (i) present in the 
neighbourhood.

3. If focal lattice site F is occupied by cell-type i, it is killed with probability      

4.

Measure of toxicity of colicin

iD

0 0; 0.25S S C SftD = D + D =0.3125RD =0.33CD =
t =

A bactericidal model 



Rock Paper Scissors on a Spatial 2D Lattice with Diffusion

May-Leonard Model

Effect of Lattice Size on Pattern Formation 
Shows important role of noise in perturbing the 

patterns  for small values of LSelection Reproduction

Alternative Model

Update Rules: 
Choose one of 3 

reactions with the 
following 

probabilities

Reproduction

Selection

Exchange

µ
µ s e+ +

s
µ s e+ +

e
µ s e+ +



Relation between Deterministic and Stochastic Spatial Models of Rock-Paper-Scissors Game

Deterministic

Partially Stochastic represented by Stochastic PDE’s

Fully Stochastic Agent-Based Simulations (ABS)

Noise incorporated through a Gaussian 
noise term in the evolution equations 



Relation between the Master Equation and SPDE’s

Master Equation

Fokker-Planck (FP) Equation

Kramers-Moyal expansion of Master 
Equation to second order in (ds) i.e. O(1/N)

Stochastic Differential Equations SDE’s

Partially Stochastic Model represented by Stochastic PDE’s

Incorporate diffusion through exchange process 
to leading order in (ds≡1/N) i.e. (1/N)0

è Noise due to number fluctuations incorporated to  1( )
N

O



Source of Noise in SPDE’s
v Noise due to number fluctuations arising from birth-death processes

Appears in SDE at 

v Noise due to number fluctuations arising from exchange processes
The Diffusion term to leading order i.e. in the absence of fluctuations i.e.

1( )
N

O

( )01O N

{ } { }1
1

( ) ( ) ( ) ( )
d

i
T a r r a r a r r a r

d
e d d

=

é ù= + - + - -ë ûå
r rd-

r
r rd+

[ ]2( , ) ( ) ( )(1 ( ))r r
DB r r r r a r a r
N

d¢¢ ¢= ¶ ¶ - -

1( )
N

O( , )B r r¢Since noise is proportional to                 it appears at            and can be ignored 

Noise due to number fluctuations arising from exchange processes comes from the term



Effect of Increasing Diffusion Coefficient: Loss of Diversity

! = 2 ∈ %&' = 4) : Area covered by a random walker in unit time in 2-dim 
D : Diffusion Coefficient

Reichenbach, Mobilia, Frey; Nature 2007, Journal of Theoretical Biology 2008



Stochastic Simulations
Pattern Formation without and with Noise

L=1000                  L=1000                  L=500                   L=500                     L=300



Ways in which Cooperation can evolve 

1. Repeated interactions leading to evolution of cooperation due to behavioral book-
keeping

2. Direct Reciprocity as manifest in the success of TFT-like strategies
3. Indirect Reciprocity: Reputation (as a cooperator or defector) determines the 

likelihood of being helped by others
4. Structured populations can facilitate survival and spread of altruistic behaviour

Altruists interacting more often with each-other than with non-altruists can acquire larger payoffs

Can be facilitated by Kin-recognition

Positive assortment



Evolution of Cooperation: The effect of interactions with kin

A- Altruists (Cooperators), N – Non-altruists (Defectors)

Pr(A|A) – probability that an altruist interacts with another altruist

Pr(A|N) – probability that a non-altruist interacts with an altruist

Altruists will increase in frequency if

{Pr(A|A) – Pr(A|N)}b > c

b-c -c
b 0

A N
A

N

Altruism can evolve when A’s are more likely (than random) to interact with other A’s than with N’s

If Pr(A|A)=Pr(A|N), altruism cannot evolve regardless of the benefit (b) it confers since the cost c>0

Kin Recognition: One mechanism by which animals recognize and preferentially interact with kin 

è A is more likely to interact with A and N is more likely to interact with N 

Kin recognition requires that the relation between two individuals in the population must be 
incorporated while calculating the probability of interaction between them. 

b – benefit to the recipient

c – cost to the donor

McElreath & Boyd (Chapter 3)



Inclusive Fitness

Altruistic behaviour (phenotype) encoded in genes (genotype).

Kins can share the altruism gene if it is passed onto each individual by 
a common ancestor in which the altruistic gene arose.

An allele coding for altruism can selectively help other copies of itself 
found in kin if altruistic behaviour is preferentially directed towards kin 

Common 
Ancestor 

(N)

A

A A

N

N

Inclusive Fitness: å+=
r

rrrFf F ii

Individual Fitness

Fitness of r’th relative

Coefficient of relatedness 
between i & r

Helps in explaining the evolution of social insect societies where the workers are infertile and hence has zero 
reproductive fitness. 
Requires redefinition of fitness.

The inclusive fitness can be non-zero even when the individual (reproductive) fitness is zero



Hamilton’s Rule

Assume individuals interact in a Prisoner’s Dilemma Game

Probability that two individuals possess the same (A or N) allele depends not just on the frequency (p) of 

allele in the population but also on whether the two individuals are related. 

Probability that the two individuals are related by common descent = r – coefficient of relatedness

Pr(A|A) = r(1) + (1-r)p

Pr(N|A) = r(0) + (1-r)(1-p)

Pr(A|N) = r(0) + (1-r)p

Pr(N|N) = r(1) + (1-r)(1-p)

Pr(A|A) + Pr(N|A) = 1

Pr(N|N) + Pr(A|N) = 1

{Pr(A|A) – Pr(A|N)}b > c rb > c

Hamilton’s Rule for altruism to evolve

When r=0, Pr(A|A)=p; Pr(N|A)=1-p; Pr(N|N)=1-p; Pr(A|N)=p è Random interaction

Whether A interacts with another A depends only on the frequency (p) of A

Haploid kin-selection model
Altruism phenotype specified 

by a single allele 

If the two individuals are related, 

both possess the altruism allele 

with probability 1

If they are not related, both can 

still possess the altruism allele 

with probability p



Genealogy and “Coefficient of Relationship” between Kin

D and E are siblings : What is r_DE ?

Count number of steps required in going from D to E via the common ancestor

Multiply each step by (1/2) and sum over all possible independent paths between D & E to get r_DE

Two independent paths : DèAèE or DèBèE, for each path two steps are reqd. to go from D to E

r_DE = (1/2)^2 + (1/2)^2 = 1/2

G and H are cousins : What is r_GH ?

Two independent paths: GèDèAèEèH or GèDèBèEèH; for each path 4 steps are required

r_GH = (1/2)^4 + (1/2)^4 =1/8 

Valid for diploid organisms where each of the 2 alleles at a locus has an equal probability of being inherited.  

This explains multiplication by (1/2) for every step. 



Heuristic derivation of Price Equation

(1 )
A A

A B

F Np pFp
F Np F N p w

¢ = º
+ -

ApF pwp p p
w
-¢D º - =

Zygote Adult Zygote Adult

Time: t Time: t+1

A: possess the altruisim allele; B: does not possess the altruism allele (cheater)
Probability that a zygote A survives to adulthood a to the mean fitness of A (FA) in the population
# A-adults that survive at time t: NpFA

Frequency of A-adults at time t: 

Assuming asexual reproduction and each adult produces z-zygotes at time t+1

Frequency of A-zygotes at time t+1: (# _ )
(# _ ) (# _ ) (1 )

A

A B

pFA adults z p
A adults z B adults z pF p F
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A
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å
å Total frequency of Altruism alleles in the population 

Total fitness of Altruism alleles in the population 



Price Equation and Rediscovery of Hamilton’s Rule

),cov()()()( iiiiii pwwEpEwpEpw º-=D Price Equation

c
ph
pyb
ii

ii >
),cov(
),cov(

Assumption 1: Assumption of additive fitness

chbyfw iii -+= 0
Linear approximation for fitness is valid when selection is weak i.e. 
when benefits accrued from or costs associated with altruism are small 

yi – Probability that the i’th member receives aid (Recipient)
hi – Probability that the i’th member provides aid (Donor)
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Assumption 2: Assumption of Linear mapping between genotype and phenotype

ji kpay +=

ii kpah +=

yi – Phenotype which determines whether the i’th member receives aid
hi – Phenotype which determines whether the i’th member provides aid 

Slope of the regression line of pj on pi (i.e. Regression coefficient) determines the spread of altruism

The likelihood (hi) of being a Donor of an altruistic act has to be positively
correlated with the frequency (pi) of the altruistic gene in the member

cov( , ) 0i ih p k= >

Ref.: Ch.3 of “Mathematical Models of Social Evolution”



To what extent does the donor’s genotype predict the recipient’s genotype ?

Altruism can spread if the donor can distinguish between Altruists and Non-
altruists and is more likely to help Altruists than Non-altruists
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b Hamilton’s Rule

Assumption 3 : Assumption of no selection for the altruism allele

}){|()()|( pppppEppE iijjij -+= b Expectation that the altruism allele is present in the j’th member 
(Donor) given that it is present in the i’th member (Recipient)

Key Question: To what extent does interaction between kin aid in spread of altruism ?

r – fraction of genes identical by descent (IBD) in both members i and j. 
– fraction of genes IBD that are altruism genes
– fraction of genes that are not IBD (i.e. not related) but are altruism genes =p

Altruism allele will be present in both i and j if 
(i) i and j are related by common descent from a single common ancestor

OR
(ii) i and j are not related but possess the altruism allele by chance because of the frequency of the 
altruism allele in the population.

, ,( | ) (1 )j i j IBD j IBDE p p rp r p= + -
If pi =0 è pj,IBD =0; 
If pi =1 è pj,IBD =1; for HAPLOID models

,j IBDp
,j IBDp



Misinterpretations of Hamilton’s Rule

Misunderstanding the nature of r

1. Washburn’s Fallacy: Interpretation of r as proportion of common genes across the entire genome 

Vast majority of human genes are same for all individuals è Washburn’s argument : All humans should be 
universal altruists and only slightly more altruistic with close kin

But humans and chimps also share many common genes more so than humans and dogs

Does that imply humans should be more altruistic towards chimps than towards dogs ?

For evolution of altruism, all gene loci are not relevant, only those where the altruism gene(s) reside

r- Probability that two individuals possess the same allele since they descended from a single common ancestor

2. Charlesworth’s Paradox : Imagine a particular species where one of the offspring stays back to help save 
and rear 4 of her later born siblings at the cost of her reproductive success è b=4, c=1, r=0.5

è rb > c è such behaviour should evolve, yet it is not observed.

3. Mutations not taken into account when considering relatedness of (altruism) gene loci that are identical by 
common descent. Individuals related through common descent from an ancestor in which the altruism allele 
arose may still not be identical as a result of mutations in one of the offspring that changes the altruism 
phenotype. Total # individuals that are non-identical by common descent = 4Nµ+1 (from pop gen theory)

Not significant (for realistic population sizes (N) and mutation rates (µ)) unless N or µ or both are very large  



Ways in which Cooperation can evolve 

1. Repeated interactions leading to evolution of cooperation due to behavioral book-keeping
2. Direct Reciprocity as manifest in the success of TFT-like strategies
3. Indirect Reciprocity: Reputation (as a cooperator or defector) determines the likelihood of 

being helped by others
4. Structured populations can facilitate survival and spread of altruistic behaviour
5. Positive assortment (facilitated by kin-recognition) leading to altruists interacting more 

often with each-other than with non-altruists
6. Punishment
7. Limited Dispersal of the offspring from its birthplace

Can limited dispersal of offspring which increases the probability of interactions with kin 
lead to spread of altruism? 



Dispersal: A pictorial representation

Contribution of each local group to the Global Pool

Dispersal/Migration of (n-m) 
individuals out of the Local 
group. (n-m) positions that 
become vacant will be filled by 
offspring from the Global pool

m individuals left behind 
in the Local group 
compete locally for m 
positions in the next 
generation

l=m/n – Extent to which population regulation is local
m=n è l=1 è NO dispersal; Competition to be selected as a 
member in the next generation occurs within the group i.e. 
population regulation is LOCAL
m=0 è l=0 è Rapid dispersal leading to a well-mixed population. 
Population regulation occurs on a GLOBAL scale 

Average relatedness in a local group = 

r

r



Modification of Hamilton’s Rule when population regulation is Local
When interaction and selection occurs within a group, Altruists compete with other Altruists to get selected 
to the next generation

Average fitness of the global population is less relevant than the average fitness of the local population in 
determining change in frequency of the Altruisim allele 

( ) ( )(1 ) i i
i i i
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w A w Np p p
w
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Group index 

Average fitness of the i’th group 

Extreme Case: Group consists of a pair of interacting individuals
Only pair-wise interaction that leads to change in         is the interaction between A and NpD
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( , ) (1 )k i iE p p rp r p= + -
Probability that an average individual donor (k) in i’s local group possess the A-allele given the 
recipient (i) also possess the A-allele with frequency p_i

Average relatedness 
between two individuals 

within i’s group

( )ip E pD = D Average increase or decrease across all groups 
gives the change in frequency of the altruism 

allele across the entire population
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When population regulation is Global i.e. l=0 , the original form of  Hamilton’s rule is recovered : cbr >

For the specific individual “j” within i’s local group whose coefficient of relatedness with i is r  

prrpppE iij )1()|( -+=

If i and j are related, both 
possess the altruism allele with 
probability proportional to pi

If they are not related, both can 
still possess the altruism allele 
with probability p
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Generalized form of Hamilton’s rulecppb ij >),(b

When population regulation is entirely Local i.e. l=1 : Spread of altruism becomes less likely as r r®
For case of competition between clones i.e. :                   ;  spread of altruism possible if                for all l1r r= = b c>



There are n sites with each site being occupied by an Asexual adult which can produce multiple offsprings
At each site, only one offspring can survive into adulthood
All individuals produce k offspirngs, all of which are biological clones è no variation within a group of siblings
v – fraction of k offsprings which emigrate (disperse) from its birth-site è # emigrants = kv
p – fraction of emigrants that survive è # emigrants that survive migration to some other site = pkv

Emigrants from a given site that survive migration are equally likely to reach and compete for any of the 
remaining (n-1) sites.
(1-v)k - # offsprings that remain at their birth site
These offsprings compete with each other as well as immigrants from other sites to occupy their birth-site in 
the next generation

A model of dispersal in asexual organisms

Dispersal out of a site

Migration into a site



Dispersal, Immigration and competition at a 
site originally occupied by a WT individual

Dispersal, Immigration and competition at a 
site originally occupied by a mutant

A model of dispersal in asexual organisms

What is the condition under (which the mutant which initially appears at only one site) invades the population ?



Pr(M|WT): Probability that a mutant takes over a site, originally occupied by a WT, in the next generation

Condition for invasion of mutants

E(#M |WT ) = (n−1)Pr(M |WT ) = (v+δ)p

1− v+ vp+ δ p
n−1

Expected number of successful mutant offspring across all (n-1) WT occupied sites

Pr(M|M): Probability that a mutant replaces it parent at its home site

Pr(M |M ) = (1− v−δ)k
vpk + (1− v−δ)k

Since there is only one such site where the mutant can replace its parent, E(#M|M)=Pr(M|M)

E(#M |WT ) = (v+δ)p
(1− v)+ vp+δ p

E(#M |M ) = (1− v−δ)
(1− v−δ)+ vpn→∞ :Lt

Pr(M |WT ) =
{(v+δ)pk

n−1
}

{(1− v)k + (n− 2)vpk
n−1

+
(v+δ)pk
n−1

}

#mutants reaching that site

Total #(M+WT) competing for that site



Total # successful mutants at ALL sites: E(#M)=E(#M|WT) + E(#M|M)  

E(#M ) = (v+δ)p
1− v+ vp

+
1− v−δ

1− v−δ + vp

If the mutant has on an average less than 1 successful offspring across all the n-sites i.e.  
E(#M) < 1 

it will not be able to invade and replace the WT

ignoring terms of For

E(#M )<1==> v > 1
2− p

δ <<1 2( )O d

δ > 0If Mutant disperses more offspring than WT

δ < 0If Mutant disperses less offspring than WT E(#M )<1==> v < 1
2− p

E(#M )<1==> δ
2− p

< vδ

Mutants can never invade iff regardless of the sign of dv = v*= 1
2− p



Emigrants Altruists

1. Dispersal (emigration) comes at a cost as it reduces the emigrants’ chances of survival.
2. Dispersal has a benefit : Avoiding competition with (k-1) siblings for survival till the next 

generation and consequently enhancing the left-behind siblings average fitness.

A mutant (M) which produces more emigrants (d>0) is more altruistic than the WT

A mutant (M) which produces less emigrants (d<0) is less altruistic than the WT

Connection between the model and spread of altruism



Evolutionary Dynamics of Cancer

Cancer: Uncontrolled growth of abnormal (DNA damaged) cells.

Evolution and Cancer: How can cancer be understood in terms of evolution ?

In multi-cellular organisms, different types of cells must act in coordination with each other to ensure growth 
and development of the entire organism.

Cells should divide when needed è cooperation between cells essential for normal functioning

Each cell has numerous mechanisms to prevent uncontrolled cell-division. Failure of one or more such 
mechanisms lead to cancerous growth è Cancer occurs when certain cells turn into selfish agents by 
replicating at abnormally high rates. 

Cancer cells manage to evade apoptosis 
Apoptosis: mechanism of programmed cell death 
which ensures damaged cells are eliminated



Cancer: Genetic Disease caused by mutations in certain types of genes

Mutations in Tumor Suppressor Genes (TSG) Mutations in Oncogenes 

Mutations in genes causing chromosomal instability (CIN)

Tumor Suppressor Genes (TSG): Class of genes that prevent cancerous tumor formation and growth.

Example: p53 – mutated in more than half of all human cancers.

Oncogenes: Class of genes which when mutated leads to cancer

Chromosomal Instability (CIN): Mutations in certain oncogenes lead to increase/decrease in the 

number of chromosomes. Examples: MAD2, BRCA2, hBUB1, hCDC4

Cancer



Pathways to Cancer

v Mutations in the first allele is neutral; no effect on cell 
division rate.

v LOH occurs when a chromosome is lost eliminating the 
corresponding allele of the TSG. Duplication of the 
remaining chromosome leads to two identical 
(homozygous) alleles of the TSG

v Mutations in the second allele increase the rate of cell 
division of damaged cells leading to cancer

v A single mutation is sufficient to activate an oncogene.
v Activating mutations can occur in different ways such 

as point mutation, gene amplification or chromosome 
fusion.

v Either of the above processes increase the rate of cell 
division leading to uncontrolled proliferation of 
damaged (cancerous) cells. 



v Rate of loosing a chromosome in a cell due to mutations in CIN gene = 10-2 per chromosome per 
cell division event. 

v Rate of LOH in cells in which CIN genes have not undergone specific mutations ~ 10-7 - 10-6 . 
v Mutations in CIN genes increase the replication rate of damaged cells which have more or less than 

46 chromosomes è proliferation of such cancerous cells.



Tissue architecture and spatial organization on cancer progression

Well-mixed population of 
cells in a compartment
(Unstructured network)

Linear network
Tissue architecture 
and colon cancer

Tissues divided into compartments each containing a population (Ne) of cells



Fixation of a mutant within a tissue compartment: Effect of tissue architecture and spatial organization

Well-mixed population of cells in a compartment
(Unstructured network)

Linear network

N-population size within 
a tissue compartment
u-mutation rate per 
cell-division event
M-#compartments 

( ) 1 Nu t
fixP t e r-= -

(1 )dP Nu P
dt

= - ( ) 1 NutP t e-= - P(t) - Probability that a mutant arises by time t

Fixation probability of a single mutant:
1 1/
1 1/ N

r
r

r -
=

-
(well-mixed case)

1
N

r = (Linear network case)

: Probability that a mutant gets fixed by time t N=103 ; u=10-9; M=107; r=1.1; t=70 yrs

Expected # mutated compartments after 70 years: P(t)M = 23000 (well-mixed); 26 (linear)

Linear architecture of tissue compartments significantly reduce rate of cancer progression 

0.09r » (well-mixed case) 0.001r » (Linear network case)

Architecture without compartments: N=107 P(t) ~ 0.28 in t<1 year



Cancer progression and TSG

What are the quantitative evolutionary questions that one can ask and answer in this context ?

How long does it take for a population of replicating cells to inactivate a TSG ?

v Starting from a population of N WT cells, how long does it take for two mutations (one in each allele) 
to appear in at least one cell ?  

v How does this time depend on the population size and the mutation rates u1 and u2 ? 

Assumption: The first mutation in one of the alleles that occur with rate u1 is neutral and it has no effect 
on the replication rate of cell where that mutation has occurred. 

Let A+/+ represent a “Type 0” cell with two functional (unmutated) alleles
Let A+/- represent a “Type 1” cell in which one allele of the TSG has been mutated but the remaining allele 
is still functional 
Let A-/- represent a “Type 2” cell in which both alleles have been mutated. 
Question: What is the probability that a single A-/- cell arises by time t in a population of replicating cells ? 



Markovian Analysis of TSG Inactivation

Consider a Markov process with N+2 states. States i=0,1,2,….,N  are either Type 0 or Type 1

Suppose there are i cells of Type 1 and (N-i) cells of Type 0

State i=N+1 is the only absorbing state and indicates that a cell of Type 2 has been produced.

The Transition Probabilities are given by the following equations
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Markovian Analysis of TSG Inactivation

Let ti be the time required to generate at least one Type 2 cell starting from a cell in state i. 

This set of equations can be solved analytically in the limit of small and large population size N



Small Population Size: Allows for separation of time-scales

u
N

2
21

1
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N+2 state Markov process reduces to a 3 state Markov process

X0(t),X1(t),X2(t) – probabilities of being in states 0,1,2 respectively

State 0 : All cells are Type 0 i.e. A+/+

State 1 : All cells are Type 1 i.e. A+/-
State 2 : At least one cell is Type 2 i.e. A-/- X2(t)=P(t)

Xi(t)- Stochastic variable
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Assumption: Fixation of Type 1 occurs 
before Type 2 cells can be produced

Rate of producing 
Type 1 cells from 
Type 0

2

1
Nu

t <<

2

1
Nu

t >

Assumption: State 1 can be attained only 
after all A+/+ cells mutates to A+/- cells

Fixation probability of 
Type 1 cells Rate of producing Type 2 cells from Type 1



Large Population Size

Time scale of appearance of Type 1 cells : t ~ 1/Nu1 < 1

Time taken to inactivate a TSG in Large populations << Time taken to inactivate a TSG in small populations

For large population size (N>1/u1) we can assume frequency 

(x1) of Type 1 (A+/-) cells grows linearly with time

tNutx 11 )( »

21 )()1( utxP
dt
dP

-=

P(t) – Probability that a mutation in the second allele occurs after time t 

Nu1>1 èP(t) è 1 è A-/- cell is produced in a shorter time scale compared to that in small populations 



What is the primary factor in cancer initiation ?
Inactivation of a TSG?

OR

CIN due to mutations in Onco-CIN genes?



Which mechanism is responsible for cancer initiation ?
Can inactivation of a TSG occur before CIN brought about by mutations in CIN genes ?

Does CIN speed up the process of inactivating a TSG ?
è Faster initiation of cancer in CIN cells than in cells without CIN
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Relation between mutation rates

CIN cells 
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Cells without CIN

Consider a stochastic process 
with 6 states

Xi also represent probabilities of 
finding the system in the 
corresponding state i at time t

Imp. question for cancer treatment
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Rapid LOH for A+/- CIN cells è A-/- CIN



If 
Probability of finding the population in state Y2 (all A-/- CIN cells) 

>
Probability of finding the population in state X2 (all A-/- cells without CIN)

è CIN is more likely to be responsible for cancer initiation than TSG inactivation 

If 
Probability of finding the population in state Y2 (all A-/- CIN cells) 

<
Probability of finding the population in state X2 (all A-/- cells without CIN)

è TSG is more likely to be responsible for cancer initiation than CIN mutations 



Assumptions

v The mutation in the first allele is selectively neutral è prob. 
Of fixation of the A+/- mutant is 1/N

v The CIN mutation which occurs at the rate uc is also 
selectively neutral.

v A-/- cells have a strong selective advantage è A single A-/-
cell is very rapidly fixed in the population. This allows us to 
consider transitions from state X1 (or Y1) to the state X2 (or 
Y2 in which all the cells are  A-/-)

1,, 21 <<tutNutu c

In the time-scale (t) of a human lifetime ~ 70-80 yrs
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If CIN is to initiate cancer earlier than TSG

If rate of LOH = p0

and 
point mutation rate per gene = u

If there exists n1  Class 1 CIN genes and n2 Class 2 CIN genes
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If u~p0, N=4, n1=n2=2 è
~75% of all cancers initiated by CIN
~25% of all cancers initiated by TSG inactivation

Combination of point mutation rate for 
mutating the second allele and LOH



Likelihood of cancer initiation by CIN in small populations when CIN mutations have a selective disadvantage
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If u~p0, N=4, n1=n2=2, r=0.8 è r = 0.1734
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~68% of all cancers would be initiated by CIN
~32% of all cancers would be initiated by TSG inactivation



Likelihood of cancer initiation by CIN in large populations when CIN mutations have a selective disadvantage

If N=100, r=0.7 èr = 1.39x10-16 è Fixation of a CIN mutant is extremely unlikely

A+/- CIN cells are produced at the rate Nuc but they are never 
fixed in the population 
è Transition from state X1 (A+/- non-CIN cells only) to state 
Y1 (A+/- CIN cells only) does not occur.

X1è Y2 transition is still possible. 

Average frequency of A+/- CIN cells at mutation/selection eq.

Rate at which A-/- CIN cells are produced from A+/- CIN cells

Tunneling Rate from state X1 to state Y2:   
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If r=0.8, u3~0.01,u~p0,n1=n2=5
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~38% of all cancers initiated by CIN
~62% of all cancers initiated by TSG inactivation



Is CIN is more likely to be responsible for cancer initiation than TSG inactivation ? 

Depends on 
(i) Whether the CIN mutation is neutral or selectively costly for the cell

(ii) The effective population size of the compartment




