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What is Life ?

NASA's definition:

Life is a self-sustained chemical system capable of undergoing Darwinian
evolution.

----- Gerald Joyce

Life as we know it is much more constrained.

+ Enclosed within a protective cell wall.

4+ Carbon-based, uses DNA for genetic information storage and synthesizes
proteins to perform crucial tasks.

4+ Protein synthesis uses a genetic code which encodes only 20 amino acids.



Nothing in Biology makes sense except in the light of evolution.

----- Theodosius Dobzhansky

Multiple Sequence Alignment of a segment of a gene

Human MVQSCSAYGCEKNRYDKDKPVSFHKFPLTRPSLCHE FRPTKYSSICSERFTPDCFRKRECNNKLLEENAVPTIFL QVDAAIGLIM 120
Mouse MVQSCSAYGCENRYDEKDKPVSFHRKFPLTRPS 1E KNFRPTKYSSICSERFTPDCFRRECNNELLEENAVPTIFL QVDAAIGLLIM 117
Rat MVOSCSAYGCKNRYDEKDKPVSFHEFPLTRPSLCHG RN P TRY SSICSERFTPDCFHKRECHNNKLLKENAVPT IFINY = FOVDAAVGLIM 117
Chimpanzee MVQSCSAYGCKNRYDKDEKPVSFHKFPLTRPS 5 IFKPTKY SSICSERFTPDCFKRECNNKLLKENAVPTIF 3 FQVDAAIGLIM 120
Monkey MVQSCSAYGCENRYDKDKPVSEHKFPLTRPSLCHE RENFKPTKYSSICSERFTPDCFRRECNNELLEENAVPTIFL POQVDARAIGLLIM 119
Dog MVQSCSAYGCENRYDEDKPVSFHERFPLTRPS ¥ RENFKPTKYSSICSERFTPDCFRRECNNKLLEENAVPTIFL N FOVDAAIGLLM 120
Cow MVQSCSAYGCKNRYDKDKPVSFHKFPLTRPSLCH § FKPTKYSSICSERFTPDCFKRECNNKLLKEDAVETIFY w EQVDAAIGLIM 120
Opossum .‘(‘-’QSCSAYGCRRR':’DKDKPVSE‘?.KFPLTRPDU: FKPSKYSSICSERFTPDCFRRECNNKLLEKENAVETI o BQVDAALGLIM 120
Chicken MVQSCSAYRCRNRYDREKPISFHREPLTRPDLCHHE KNFRPTRYSSICSERFTPDCFKRECKNNELLEENAVPTIE T PEVDPSIGLLM 121
Xenopus MVQSCSAYGCRNRYDEDEPISFHRFPLERPLL : ADFKPTKY SSICSDHFTADCFKRECNNKLLKDNAVFTIF, 4 FEVDPAIGLLL 120
Zebrafish MVQSCSAYGCENRYQKDARNISFHEKFPLARPEVC E RNFRPTKYSNICSQHFTSDCFKCECNNRVLEDNAVES i --FSADVCFPL 97
EX AP R AR Fs bR s has ahP RN EE vy s SEANSAFE PRV RN AW hsr bbb sawpssp sy e o.n
Human PPLOTPVNLEVFCDHNYTVED TMHQRER THQLEQOVEXLRXK LK TAQORCRRCERQLEKLK -EVVHFQKEXDDVSERGYVILENDYFEIVEVEA. 213
Mouse PPLOTPDNLSVFCDHNYTVEDTMEQRER ILQLEQOVEKLREKK LK TAQQRCRRCERQLEKLK -EVVHFQREXDDASERGYVILEPNDYFEIVEVPA 210
Rat PPLOTPDNLSVECDHNY TVEDTMHORER I LHLEQOVEKLRKK LK TAQQRCRRCERQLER LK ~-EVVHF OREXDDASERGY VILFNDYFEIVEVPA= = === mneecnnaa= 210
Chimpanzee PFLOTPVNLSVEFCDHNYTVEDTMHORKRIHQLEQOVEXKLREKKLKTAQORCRROERQLEKLK~-EVVHFOKEXKDOVSERGYVILPNDYFEIVEVPA= === mmmmm e en= 213
Monkey PPLOTPVNLSVECDHNYTVEDTMAQRER THQLEQOVEKLRKK LK TAQQORCRRCERQLEKLE-EVVHF QKEKDDVSERGYVILPNDYFEIVEVPA--——————=====m— 212
Dog PPLOTPDNLSVECDHNYTVEDIMEQRERIHQLEQOVEKLRXKLETAQQRCRROERQLERKLE-EVVHF QRKEXDDISERGYVILPNDYFEIVEVPA- -~~~ cm=mmeaaax 213
Cow PPLOTPONLSVECDHNY TVED TMHORKR THOLEQOVEXKLRXKK LK T AQORCRRCERQLEKLK - EVVHFQKEXDGASERGYVILANDY FEIVEVRPA- === === ——m = 213
Opossum PPLHT PNNLAVEF CDHNY TVED TVRQRER ICQLEE QVEKLRXK LK TAQORCRRCERQLEK LK -EVVOF OKEXDALSGRGYVILPNDYYEIVEVRPA- - - === === e e 213
Chicken PPLOTPSNLAVE CDHNYTVEDIVHQRERIQQLEEQVEKLREKKLKTAQQRCRRCERQIERLR-EIVOFQREXDILAGKGYVILPNDYFEVVEVPA= = === mneecccaaa 214
Xenopus PPLYTPSHIAVICDHNYTVEDTVHORRRICOLEEQVDXLRKELE IANQKCRRCERSLERKLEREVSEYREAK == ==GSGYVIFFGNYYEVLNENEYKELAPEITYKEIIL 225
Zebrafish NVCATAEPLSECFPEQCGLPDGQEAG-AVICPEQCVPPG-—---- GQERGAVSCDHIPCLRILILILO i -- 158

» .- . (& . e .- -
. = .. - . . - cea . - . . =

Transparent blue strips indicate locations where the amino acids in the human and mouse gene segments differ
There is no difference between the human and chimp for this gene segment

Humans diverged from chimps approx. 5 million years ago



Darwinian Evolution
+ Mutations occur at random
Mutations can be advantageous, deleterious or neutral.

+ A random mutation can confer a slight selective advantage to an
individual which enhances its ability to survive and reproduce in the
given environment with respect to its competitors.

+  This slight advantage leads to its progeny surviving and propagating with
greater probability.

+* Fixation of the mutant - Over time this can lead to the mutant individual
taking over the entire population.

The Peppered Moth Story (Pictures taken by Olaf Leillinger)

Pre-industrial revolution Post-industrial revolution

Post pollution control



Topics

Introduction to Evolution

Concepts of sequence Spaces and Fitness Landscapes

Evolutionary Games

Effect of Finite Populations

Evolutionary Games in Finite Populations

Introduction to Evolutionary Graph Theory

Spatial Games: Cooperation and Conflict between interacting agents
Evolutionary Games on Networks

Evolutionary Dynamics of Cancer

Objective: To develop a quantitative understanding of evolutionary processes

Tools: Basic Calculus and basic statistical concepts, simple computer programs

Books : Evolutionary Dynamics by Martin Nowak (Primary)

Evolution and the Theory of Games by John Maynard Smith (Secondary)

Mathematical Models of Social Evolution: A Guide for the Perplexed by McElreath & Boyd

Marks based on assignments, mid-term exams, final exams, paper/proposal presentation



Big Questions
How do populations evolve ?

How does the mutation rates of agents in the population affect long-term
population structure ?

What is the effect of selection on population structure when there are mutants with
varying fitness in the population ? (Survival of the fittest ?)

Under what conditions can a neutral (no selective advantage or disadvantage
relative to the wild type) mutant take over the entire population by chance ?

How did cooperation emerge in a world where individuals try to maximize their
benefits and minimize their costs ?

Role of underlying network structure on the evolutionary dynamics of the population
What is the effect of finite population size on evolutionary dynamics ?

How can we explain the sudden proliferation of certain infected cell types which lead
to cancer ?



Two Examples

1. Random Selection: Evolution of population structure of two types of individuals having
the same fitness.

+ Two types represented by two different colours, red and grey.

=

+ The two colours are initially randomly distributed across the grid.

l

4+ Evolution is mimicked by each patch randomly picking another patch to update its own
colour ﬁ

4 Over time, one colour will gain a slight dominance over the other.

n The dominant colour will spread as it is more likely to be picked to update the colour of a
patch.

4 The random nature of the process can lead to shifts in the dominant colour
4+ Eventually one colour takes over the entire grid.

+ Since there is no advantage of one colour over the other, each colour is equally likely to
take over the entire grid.



2. Fitness-dependent selection : Evolution of a population of cooperative/altruistic and

selfish agents
Bl

Altruism.nlogo

+ Evolution of the population depends upon fitness determined by two phenotypic traits.
+ Cooperative/altruistic behaviour (phenotype) comes with a cost as well as a benefit to the agent.
+ There is no cost for selfish behaviour.

L Due to the cost associated with altruism/cooperation, the fitness of altruistic agents are
somewhat less than the fitness of selfish agents.

+ Population evolution is mimicked by changes in the colour of each agent over time.

& Colour changes are determined by the fitness and number of altruistic and selfish agents
surrounding each agent.

4+ Population evolves from an initial state of roughly equal numbers of altruists and selfish agents to
a final stage in which either selfish or altruistic agents dominate.

4+ Gives insight into how cooperation/altruistic behaviour can be sustained in spite of the cost
associated with such a phenotype.



Sequence Spaces and Fitness Landscapes

Sequence Space : A sequence of length L is a point in L-dimensional space where
each dimension has 4 discrete values corresponding to the 4 nucleotides.

There are 4* discrete points in the sequence space and each point corresponds to a
distinct sequence of length L.

001 011
When only purines (A and G) and Pyrimidines (T and C) are distinguished instead of all 4

nucleotides, each of the L dimensions in sequence space has 2 discrete points = the 101 /

sequence space for a sequence of length L has 2L discrete points. 111

For L=3, the sequence space for sequences made up of purines (represented by 0) and 000
pyrimidines (represented by 1) has a total of 23 =8 discrete points and can be represented / 010
by the vertices of a cube. 100 i

Movement in sequence space occurs in discrete steps and Evolution is a trajectory

through sequence space
Single Peak Fitness

Fitness Landscape: Fitness determined by the phenotype i.e. characteristics like Landscape
behaviour, morphology, structure, shape etc. \

Genotype = Phenotype mapping determines how changes in the genome affect the
phenotype — the most challenging problem in Biology

Fitness landscape : Direct mapping between genotype and fitness.

Fitness Landscape: (L+1)dimensional space where the first L dimensions describes the 00 T
sequence space and the (L+1) th dimension represents the fitness associated with each

of the 4+ (or 2- ) sequences

Evolution of sequences amounts to movement in the fitness landscape and Adaptation 10 11

is an attempt to attain peaks in the fitness landscape.



Adaptation of a population of 10 sequences of length L=2

00 11 11

01 11 11

00 11 11

01 Evolution 01 Evolution 11

11 11 11

10 ) i —> u

11 10 11

11 After some generations 11 After many more generations 11

10 00 11

01 11 11
Type Frequency Type Frequency Type Frequency
00 0.2 00 0.1 00 0
01 0.3 01 0.1 01 0
10 0.2 10 0.1 10 0
11 0.3 11 0.7 11 1

A population is well adapted if most (or all) of the members cluster around a fitness peak in
the fitness landscape



Adaptation: Generic case

A
Fitness

Sequence Space

Well adapted population
clustered around the peak

Size of the circles represent the frequency of the corresponding sequence in the population

Below Error Threshold : Adaptive evolution

? O

Fitness ‘
‘ ® ‘ Evolution
>
Sequence Space
Initial population distribution

? O

Fitness

Sequence Space

Evolution

u<i/L

A
Fitness

Eq. freq. of

/ Type 0

Sequence Space



A
Fitness

Above Error Threshold : Non-adaptive evolution

A
Fitness

Evolution

u>1/L

+ For a replicating molecule to be viable without error-correcting enzymes, its length should be small.

4+ For a replicating molecule to encode error-correcting enzymes its length should be substantially larger

Sequence Space

than several thousand bases.

Sequence Space

>

Fittest Sequence Type (Type 0) lost from the population

Eigen’s Paradox



RNA virus Error Catastrophe
4+ Anti-viral effect manifest by enhanced mutagenesis of the Polio virus genome

High mutation rates = loss of viability of the Polio virus genome ;::;:;;-;,h:;,::;,v;,fa"';{;:;;g,s"bav'"" can be directly

100 pM 400 pM 1,000 M
Normal ribavirin ribavirin ribavirin

RNA-specific infectivity loss - 33 18 140
Loss of total viral RNA — — 6 16
Total predicted titer

reduction 1 33 100 2,200
Actual titer reduction* 1 3.2 71 2,000

*Untreated (“normal”) poliovirus titer in this experiment was 1.2 x 10" PFU
per plate of Hela cells (6 x 10° cells). Data are the average of three
experiments.

+ Polio viruses reside near the edge of the Error Threshold
Modest (less than 2-fold) increase in mutation rate = 50% of the viral population becomes unviable

4-fold increase in mutation rate = 95% of the viral population becomes unviable.

Table 3. Mutation frequency in ribavirin-treated RNA B. 120
virus populations 2 10}
G—A C—T Total mutation frequency* §§ 304
Normal population 0.5 1.2 2.1 ;g 0]
100 uM ribavirin — 1.3 25 %e a0
400 uM ribavirin 44 5.0 9.3 £, ® Untreated
1,000 uM ribavirin 6.8 12.0 20.8 ) — @ 100
*Mutations per 10,000 nt sequenced. ¢ ;umzms,,{i,\glc:nm:z o ‘ 400
400007 ™
B ¢ 1000
4+ High mutation rate produces Polio-virus mutants having low infectivity
The amount of infectious virus genomes in the population is reduced several fold
as concentration of Ribavarin increases.

0 5 10 15 20 25

viral RNA (ng)

Ref.: Crotty, Cameron, Andino; PNAS 98, 6895-6900 (2001) PFU: plaque forming unit



How does Mutation Rate per site (¢) across organisms compare with the Error Threshold (/L) ?

Genome length Mutation rate Mutation rate

Organism in bases per base per genome
RNA viruses

Lytic viruses

Qp 4.2 x 10° 1.5x 1077 6.5

Polio 7.4 x 10° 1.1 x 107# 0.84

Y 1.1 x 10* 32x 107 3.5

FluA 1.4 x 10* 73 % 10°° 0.99

Retroviruses )

SNV 7.8 x 10° 20x 1077 0.16

MulV 8.3 x 10° 35x%x 10°° 0.029

RSV 9.3 x 10° 4.6 x 10°° 0.43
Bacteriophages

M13 6.4 x 10° 7.2x 1077 0.0046

A 4.9 x 10" 7.7 x 1078 0.0038

T2 and T4 1.7 x 10° 24x 1078 0.0040
E. coli 4.6 x 10° 54 x 10710 0.0025
Yeast (S. cerevisiae) 1.2 x 107 2.2x 10710 0.0027
Drosophila 1.7 x 10° 3.4 x 107" 0.058
Mouse 2.7 x 10° 1.8 x 10710 0.49
Human (H. sapiens) 3.5 x 10° 5.0 x 107" 0.16

Sources: Drake (1991, 1993) and Drake et al. (1998).
Note: Most organisms have a mutation rate per genome which is less than one, as predicted by the
error threshold theory. Why QB and VSV have such a high mutation rate is at present unexplained.

Note: Organisms remain viable only if uL<1)



Pictorial representation of evolution by mutation without selection

Bl A-type @ B-type
Time #A
Time=t Pick Random members / EEOEOOIEm nA
Check type A or B Check if RN < ul, if true
mutate A to B. If False, Repeat process for other members of population

leave A unchanged

l

Time=t+1 HOOOEOIEON nA

1
[

nB

nB+1



Moran Process

Assume two types of individuals A and B in the population of N individuals, both types having the

same fitness.

In every generation, one individual is picked at random for reproduction and another individual is

picked at random for death.

Question: What is the fixation probability of A ?

Fixation Probability of A: Probability that the frequency of A increases from an initial value of i/N
to a final value of 1 i.e. the final population consists entirely of A

Time=t

\

A picked for reproduction & B for death

Time=t+1

Probability = p ;;,,

Bl A-type @ B-type

Time=t

7'-..-/-

B picked for reproduction & A for death

Time=t+1

Probability = p ;;,

Piiit PiitPii1=1

Time=t
7 HOEOOEE
A picked for reproduction & A for death

Time=t+1

Probability = p ;;



Difference between Invasion and Fixation

Invasion is a special case of Fixation

In deterministic simulations involving the replicator equation,
Invasion by type A = frequency of A increases from a very small fraction x=¢ << 1 =2 x=1

Fixation of A = frequency of A increases from any x = x=1

In stochastic simulations like evolution by Moran process
Invasion by type A =» frequency of A increases from x=1/N = x=1

Fixation of A = frequency of A increases from any x (such that 0 < x=#A/N < 1) = x=1

NOTE

The inability of A to /nvade a population of B does not mean that A cannot get fixed in the
population if its initial frequency is sufficiently large.



Evolution with selection via Moran Process

Reproduction: Occurs with probability proportional to the fitness of the agent

Death: Occurs at random, independent of the fitness of the agent

ri N —i (N —i)l i

Pt = imiv—n) U N P = i =i )\

|

Prob. of picking B for reproduction
Prob. of picking A for death

Prob. of picking A for reproduction

Prob. of picking B for death

1 Invasion Probabilities for N=100
(1--)
_ Piia l X = a
i 'y — . i 1 r X =0y _
ii+1 (1 — ’,—N) 5 0.5 r X =Py
| 101 0.016 0.99 0.0058
Forr>1;,as N> o X, =p, 1—— 1 0.01 0.9 0.000003
2

=» Invasion by a selectively advantageous mutant is not guaranteed even for large population sizes



Standard Game Theory

Two players A and B play a game

Neither player knows the opponent’s strategy

Primary Question: What strategy must each player adopt to maximize its payoff ?

Brings into play the concept of rational agents

If both A and B act rationally, each will try to maximize his payoff.
However, there is no guarantee that a player will act rationally.



Frequency-dependent Fitness

Individuals have fixed strategies that are known to other individuals in the population.
Random interactions occur with other individuals (including those belonging to the same type)
In the Biological Context
strategy 4mmm) phenotype and payoff 4mmm) fitness

Fitness is a measure of reproductive success

A component of Fitness of an individual is determined by the cumulative payoff to that individual
resulting from the encounter with other individuals of the same type as well as different types.

The population is updated every generation when individuals reproduce with
Probability proportional to fitness




1 B

=] Fl =]

PD N-Person Iterated-1C-10D.nlogo PD N-Person Iterated-10C-1D.nlogo PD N-Person Iterated-10C-10D.nlogo



Evolutionary Games

George Price John Maynard-Smith

Competition between different types of individuals with frequency-dependent fitness can be thought
of as a game in which each type employs a distinct strategy and gets a certain payoff in an encounter
with another individual.

Fitness is a measure of reproductive success and strategies that yield higher cumulative payoff,
reproduce at a faster rate.

Consider a population with two types of individuals A and B whose fitness are fa and fg respectively.
Assuming /inear dependence of fitness on frequencies X, ,Xg ;

fa=ax,+bxg

fe=cx, +dxg

Can be written in matrix notation as f = Mx, f=[f, ,fz ]; X=[Xx ,Xg ]

where M is the payoff matrix.

E(A,A)=a : Payoff to A when it interacts with another A
E(A,B)=b : Payoff to A when it interacts with B

M= E(B,A)=c : Payoff to B when it interacts with A
E(B,B)=d : Payoff to B when it interacts with another B



Replicator (Deterministic) Dynamics

Case 1: a>c; b >d =» Payoff to A > Payoff to B : A dominated B

Only one stable equilibrium solution exists. EI 0< O
X=1 X=0

Case 2: a<c; b<d =» Payoff to B > Payoff to A : B dominates A

Only one stable equilibrium solution exists. EIC . >’
X= X=

Case 3:a>c;b<d=» x=0,1, (d-b)/{(a—c)+(d—b)}

3 equilibrium solution exists; A and B are bistable, mixed-state solution is unstable.

O >0|e|

x=1 x=(d-b)/{(a—c)+(d=Db)} x=0

Case 4:a<c;b>d=>» x=0,1, (d-b)/{(a—c)+(d—b)}

Only one stable equilibrium solution exists. A & B stably co-exist.

x=0, 1 are unstable equilibrium solutions. EIC ® O
=1 x=@bv/@-o+@-by X0




Nash Equilibrium

A strategy is said to be a Nash Equilibrium if the person adopting the strategy cannot
increase his payoff by changing to a different strategy.

A is a strict Nash Equilibrium ifa > ¢
A is a Nash Equilibrium if a > ¢
B is a strict Nash Equilibrium ifd > b

B is a Nash Equilibrium ifd > b

For a strategy to be a strict Nash Equilibrium, the payoff of the person adopting that
strategy must decrease if he changes the strategy.

Evolutionarily Stable Strategies (ESS)

Consider a large population of individuals employing strategy A. If a mutant employing strategy B is
introduced into the population, can the mutant invade the population consisting primarily of
A-type players?

In the /nfinitely large population size limit, let the number of B mutants (invaders) be infinitesimally
small with frequency given by Xg =€ . Frequency of A’'s: Xa =1- €

fa=a(1-€)+be;fg=c(1-€g)+de
B cannotinvade Aonly if f,> f; i.e.a(1-g)+be>c(1-g)+de
Since € is very small, neglecting terms of order € gives a>c =& E(A,A) > E(B,A)
If however, a=c, f, > fz gives b>d & E(A,B) > E(B,B)
Definition: Invasion Probability of B (in finite populations): Probability that a single B mutant in a

population of (N-1) A-type individuals eventually gets fixed in the population i.e. the final population
consists entirely of B.



General Condition for Nash Equilibrium and ESS in games with more than two strategies

Strategy Sk is a strict Nash equilibrium if E(S, , Si ) > E(S;, Sk ); i#k
Strategy Sy is a Nash equilibrium if E(S, , S ) = E(S;, Sy ); for all i#k
Strategy Sy is an ESS if for all ik

either E(Sy , S, ) > E(S;, Si )

OR

E(Sk,Sk) = E(Si, Sk ) &E(Sk, S;) > E(Si, Si)

If a strategy satisfies the conditions for either strict Nash equilibrium or ESS, it implies that the
strategy cannot be invaded by a mutant strategy.



Pictorial representation of the Simulation of Moran Process: Neutral Evolution Case

Bl A-type @ B-type

Time=t Pick Random members N . [ . . I nA nB

Suppose RN1=6 ; RN2=4 I\
A picked for reproduction & B for death

l

Time=t+1 . KN NN B N nA+1 nB

1



Pictorial representation of selection without mutation: Fixation of an ad/disadvantageous mutant

Evolution by Moran Process

Time Bl A-type @ B-type
Time=1 Pick_a Random member EEOEOOOEMN Parent pop. Array (P)
Suppose RN=3 1,
Not OK B picked for reproduction A picked for death at random

Compare with <fitness> for reproduction: Pick RN between 0&1. If RN < normalized_fitness of B, then OK

oK l B becomes the seventh member of the Offspring pop. at t=2

Time=1 EEOEOOO N Offspring pop. Array (O)

f

B becomes the seventh member of the Offspring pop. at t=1

Offspring population at t=1 becomes the parent population t=2

Time=2 I XX B Parent pop. Array (P)

Repeat above steps to generate the parent population t=3 and so on

Note: If fitness of A is r1 and fitness of B is r2,
normalized_fitness_of A=r1/(r1+r2); normalized_fitness_of B=r2/(r1+r2)



Pictorial representation of evolution via mutation and selection

Evolution by updating whole population every generation Bl Atype @ B-type

Time=1 Copy parent pop. to offspringpop. HI @ @ EH O H O @ ‘ HOOEOEOO

Time=1 Offspring pop. after mutations =9 HEEOEOOIOIENE mutations

Time=1 Pick a Random member EEOOEOIOOIEm Offspring pop. Array (O)

Suppose RN=3
B picked for reproduction

Not OK
Compare with fitness for reproduction: Pick RN between 0&1. If RN< normalized_fitness_of_B, then OK
normalized_fitness_of B = f1/(f0+f1)
OK
l B becomes the second member of the Offspring pop. at t=2
Time=2 [ ] ? Parent pop. Array (P)

B becomes the second member of the Offspring pop. at t=2

Repeat above steps to fill up the parent pop. at t=2 HOOEEEOO

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

HOOEEEOO Offspring pop. Array (O) at t=2
Copy

K OEmEEOO Parent pop. Array (P) at t=3



Hawk-Dove Game
Hawk (H) strategy escalates the fight at the cost of injury

Dove (D) strategy initially threatens but eventually backs off, avoiding injury, but getting a
lower payoff H D

H (bo2 b ]
M=
D 0 b/2

When two Hawks interact, each has an equal probability of winning the resource (b) but
also an equal likelihood of loosing and getting injured (c)

=» Expected payoff to each Hawk : E(H,H) = (b-c)/2

When two Doves interact, each has an equal probability of winning the resource (b) but
also an equal likelihood of loosing and not getting anything.

=» Expected payoff to each Dove : E(D,D) = b/2

Assumptions

There is no fitness difference within the Hawk population = all Hawks are equally capable.
The same is true for Doves.

Both players arrive at the resource simultaneously and there is no time-lag in the behavioral
response of the two players.



Hawk-Dove-Retaliator Game

Retaliator plays Hawk against Hawk, but plays Dove against Dove and other Retaliators
Key Questions

Given an initial frequency of H,D,R, what is the final equilibrium state of the system ?
Under what conditions can one strategy invade the others ?

Sub-Population Dynamics
Are Retaliators stable against invasion by Hawks ?

Are Doves stable against invasion by Retaliators ?

Can a small frequency of Hawks invade a mixed population of Doves & Retaliators ?

Can a small frequency of Retaliators invade an equilibrated mixture of Doves & Hawks ?

Retaliator

The frequency of all three strategies can be
represented by a point in the Simplex S;.

The /length of the perpendicular drawn from the
point to one face of the simplex gives the frequency
of the strategy that is occupying the vertex
opposite to that face.

Dove Hawk



Hawk-Dove-Retaliator Game

Retaliator plays Hawk against Hawk, but plays Dove against Dove and other Retaliators
Key Questions

Given an initial frequency of H,D,R, what is the final equilibrium state of the system ?
Under what conditions can one strategy invade the others ?

Sub-Population Dynamics
Are Retaliators stable against invasion by Hawks ?  Yes!

Are Doves stable against invasion by Retaliators ? Yes!

Can a small frequency of Hawks invade a mixed population of Doves & Retaliators ?

Yes! iff Xxg < b/(b+cC); when b < ¢

Can a small frequency of Retaliators invade an equilibrated mixture of Doves & Hawks ? No!

Retaliator

The frequency of all three strategies can be
represented by a point in the Simplex S;.

The /length of the perpendicular drawn from the
point to one face of the simplex gives the frequency
of the strategy that is occupying the vertex
opposite to that face.

Dove Hawk



Mapping of Frequencies onto a Simplex

® Represents initial frequencies in the population

® Represents final equilibrium frequencies in the population

Trajectories show how the frequencies change over time & attain the final equilibrium state for
different initial conditions.



Mapping of Frequencies onto a Simplex

O Represents unstable equilibrium state Retalistor

@ Represents stable equilibrium state

red-fastest rate of change

blue-slowest rate of change

Generated by Dynamo3S

Arrows show how the frequencies change over time & attain the final equilibrium state
Coloured contours indicate how fast the frequencies are changing in the region.

red-fastest, blue-slowest



Hawk-Dove-Bourgeois Game

Asymmetry in claiming the resource: Relaxing the assumption of simultaneous claim to the resource

Bourgeois (B) plays Hawk when it arrives first and claims ownership of the resource but
plays Dove when it arrives later to claim the resource

__H D B __
y (b-c)/2 b b/2+(b-c)/4
M= » 0 b/2 b/4
B (b-c)/4 b/2 + b/4 b/2

Key Question

Can a small frequency of Bourgeois invade an equilibrated mixture of D & H?  Yes!iff b < ¢

Conclusions

Which strategy is an ESS depends not just on the payoff it receives when it interacts with a
different strategy but also on the outcome of its interaction with itself and on the frequency



Pictorial representation of evolution via mutation and selection (Error Threshold Simulation)

Evolution by updating whole population every generation Bl Atype @ B-type

Time=1 Copy parent pop. to offspringpop. HI @ @ EH O H O @ ‘ HOOEOEOO

Time=1 Offspring pop. after mutations =9 HEEOEOOIOIENE mutations

Time=1 Pick a Random member EEOOEOIOOIEm Offspring pop. Array (O)

Suppose RN=3
B picked for reproduction

Not OK
Compare with fitness for reproduction: Pick RN between 0&1. If RN< normalized_fitness_of_B, then OK
normalized_fitness_of B = f1/(f0+f1)
OK
l B becomes the second member of the Offspring pop. at t=2
Time=2 [ ] ? Parent pop. Array (P)

B becomes the second member of the Offspring pop. at t=2

Repeat above steps to fill up the parent pop. at t=2 HOOEEEOO

Copy offspring array at t=2 to parent array such that it becomes the parent pop. For choosing offspring at t=3

HOOEEEOO Offspring pop. Array (O) at t=2
Copy

K OEmEEOO Parent pop. Array (P) at t=3



Evolution of Cooperation

What Don’'t We Know?

t Science, we tend © getexcited about new discoveries that lift the veil a little on how thmgs work, from cells
1o the universe. That puts our focus firmly on what has been added to our stock of knowledge. For this
anniversary issue, we decided to shift our frame of neference, to look instead at what we don t knosw: the
scientific puzzles that are driving basic scientific reseancho
We began by asking Science'’s Senior Editonial Board, our Boand of Reviewing Editors, and our own
editors and writers to suggest questions that point to critical knowledge gaps. The ground miles: Scientists
should have a pood shot at answermg the questions over the next 25 years, or they should at least know how 1o go about
answenng them. We intended simply 1o choose 25 of these suggestons and tum them into a survey of the big questions
facing science. But when a group of editors and writers sat down to select those big questions, we quickly realized that
25 simply wouldn't comvey the grand sweep of cutting-edge research that hes bebind the responses we
received. So we have ended up with 125 quem:m a fiming number for Science’s 125th anniversary.

First, a note on what this special ssue 15 not: It is not a survey of the big socictal thalh:ngch that
science can help solve, nor is ita forecastof what science might achieve. Think of it instead as a survey
of pur scientiflic ignorance, a broad swath of questions that scientists themselves are askng. A s Tom
Siegfried puts itin his introductory essay, they are “opporfunities to be exploited.”

We selected 25 of the 125 questions to highlight based on several criteria: how fundamental they
are, how broad-ranging, and whether their solutons will impact other scientific disciplines. Some
have few mnmediate practical implications—the composition of the universe, for esample. Others we
chose becanse the answers will have enormows socictal impaci—whe ther an cffective HIV vaccine 5

feasible, or how much the carbon dicxide we
are pumping inio the atmosphene will warm our
planet, for example. Some, such as the miure of
dark cncrgy, have come to prominence only
recenily; others, such as the mechanism behind
limb regeneration in amphibians, have
intrigued scientisis for more than a cenury. We
listed the 25 highlighted questions in no special
order, but we did group the 100 additional
questions roughly by discipline.

Owr sister onling publications are also devoi-
ing special Bsues 1o Science’s 125th anniversary.
The Science of Aging Knowledge Emvironment,
SAGE KE (www.sageke org), is surveying
several big questions confronting researchers on
aging. The Signal Transduction Knowledge
Environment, STKE (www.stke.org), has
selected classic Science anticles that have had a
high impact in the field of cell signaling and s
highlighting them in an editorial guide. And
Science'’s Next Wave (www.nextwave.org) 15
lookmng atthe cansers of scientists grppling with
some of the questions Science has identified.

We are acutely aware that even 125 un-
knowrs encompass only & partial answer to the
question that heads this special section: What
Don't We Know? S0 we invite you o participate
in a special forum on Science’s Web site
{www sciencemag. org/sciex teletters/125th),
in which you can comment on our 125 questions
or nominaie topics we missed—and we apol-
ogize if they are the very questions you are
working on.

—Donan Kenney AMD Coun MorMAN

In Pralse of Hard Questions
What Is the Universe Made OFfF
what Is the Biological Basis of

Consclousness?

why Do Humans Have 5o
Few Genes?

ToWhat Extent Are Genetic
Variation and Personal Health
Lindeed?

Can the Laws of Physics

Be Unified?

How Much Can Human Life

Span Be Extended?

What Controls Organ
Regeneration?

How Can a 5kin Cell Becoms
a Merve Cell?

How Does a Single Somatic
Cell Become a Whole Plant?

How Does Earth’s Interior Work?
Arg We Alone in the Unlverse?
How and Where Did Life on
Earth Arse?

What Determines Species
Diversity?

What Genetlc Changes Made
Us Uniquely Human?

How Are Memories Stored
and Retrieved?

How Did Cooperative Behavior
Evolve?

How 'Will Big Pictures Emerge
From a 5ea of Blological Data?
How Far Can'We Push
Chemical Self-Assembly?
What Are the Limits of
Comventional Computing?
Can We Selectively Shut Off
Irrwiu i R ponses?

Do Deeper Principles Underlie
Quantum Uncertainty and
MNonlocality?

Is an Effective HIV Vaccine
Feasible?

How Hot Will the Greenhouse
World Be?

What Can Replace Cheap Oil—
and When?

' Will Malthus Continue to Be

Wrong?

4 S0 MuchMore to Know ..,

See also Editorial onp. 19and
www. sdencemag. org/sciext/12.




Prisoner’s Dilemma

P1 P2

—

% Both prisoner’s can cooperate (C) with each other by remaining silent

P1 can cooperate by remaining silent but P2 can defect (D) by confessing

% P1 can defect (D) by confessing but P2 can cooperate (C) by remaining silent

Both prisoner’s defect (D) by confessing

What should your advise be ?

C D
c|:a b:I
M=
D C d

a=-1, b=-5, c=0, d=-3



Prisoner’s Dilemma

Which is the best strategy for a prisoner to adopt that would minimize his jail-term ?

Cooperation is an emergent phenomenon

Cooperation/Altruistic behavior comes with a cost as well as a benefit !

AlM

To understand how cooperation can be sustained in an environment where
individuals are always trying to maximize their benefits and minimize their costs ?



Prisoner’s Dilemma

C D
C a b a<c, d>b & a>d
Consider the Payoff Matrix M=
D C d

a>d=> better for both to cooperate than defect

Note: D is a strict Nash equilibrium as well as an ESS.

A mixed population consisting primarily of cooperators and a very small
fraction of mutant defectors will eventually be invaded by the Defectors.



Direct Reciprocity : The game is not just played once but repeated several time between the same two
players. Each player can adopt many distinct strategies specified by the sequence of cooperate (C) or defect
(D) moves. The sequence of C and D moves of a player can be informed by the corresponding
set of moves by his opponent. The payoff for each encounter is noted and the cumulative payoff is
calculated at the end of the game by adding the payoffs for each encounter.

What is the strategy (i.e. sequence of C,D moves) that will maximize the payoff ?

Can a cooperative strategy be stable against invasion by selfish agents (defectors) ?

Suppose the game is played for m rounds. a=3, b=0, c=5, d=1

You - GRIM: CDDD.....D
Me - ALLD: DDDD....D
What is the payoff that you and I get after m rounds of the game ?

A critical number of rounds Mc=2 has to be played before the more cooperative strategy GRIM becomes

stable against invasion by more selfish strategy ALLD. If m > mc and both you and me play GRIM, then
neither of us can increase our payoff by changing to ALLD.

ALLD is also an ESS since md > b + (m-1)d = d>b
= ALLD is also stable against invasion by GRIM

Problem with fixed #rounds: No incentive to cooperate in the last round of the game.



When a more selfish strategy than GRIM emerges, it can invade a population of GRIM players.

Consider the strategy GRIM*: Cooperate as long as your opponent cooperates but defect in the last round
of the game

You—-GRIM (): CCCC....C A

Me — GRIM* (): CCCC....D >
A A A A ' B B R
AAAA ) g 0 090
A A O A ® e 00

However, GRIM** (a more selfish strategy than GRIM*) which cooperates in m-2 rounds but defects in
the last two rounds of the game can invade GRIM*

Always possible to find a more selfish strategy which defects one round before the opposing strategy which
can invade the opposing strategy i.e. GRIM = GRIM* = GRIM** = . ALLD

A cooperative strategy will always be eliminated from the population ®

The number of rounds is not always known. Let w be the probability that another round is played after one
round is completed.

The probability that the game is over after one round is 1-w

1
Expected number of rounds played : p = ——
l—w



Key Questions in the Evolution of Cooperation

What is the best strategy in a repeated Prisoner’s Dilemma game and is it possible
to find such a strategy from a space of many different strategies ?

Can a cooperative strategy emerge and invade a population of selfish agents ?

Does the outcome of the competition depend on the presence of other strategies
in the population ?



Strategy Space

Two possible classes of strategies exist:

Deterministic Strategies: Given the sequence of C and D moves that have been played in the previous
rounds of the game, a deterministic strategy specifies which move to play in the current round of the game.

Stochastic Strategies: Given the sequence of C and D moves that have been played in the previous
rounds of the game, a stochastic strategy specifies the probability of a C or D move in the current round of

the game.

For m=1, the strategy space is 4-D and all 16 strategies can be represented by the vertices of a 4-D
hypercube.

For m>1, the strategy space is 4™ dimensional with each deterministic strategy corresponding to the vertex
of a 4m dimensional hypercube. There are 24"m such strategies.

For deterministic strategies, the strategy space is discrete and changing from one strategy to another is
equivalent to moving from one vertex of the 4m dimensional hypercube to another.

For stochastic strategies, the strategy space is continuous since the probability of a C move can vary
continuously from 0 to 1. The vertices of the strategy hypercube then correspond to cooperating with
probability 1 or 0.



Evolutionary Game of Thrones : Axelrod’s 1979 Tournament

People were invited to send in strategies in the form of computer program that would
decide whether to play C or D in PD game with another strategy

Each strategy was made to interact with itself as well as every other strategy in the
population.

The average payoff for each strategy was calculated every generation as a result of these
interactions.

The population of strategies in the next generation was updated by selecting strategies
from the current generation with a probability proportional to the average payoff (fithess)
for each strategy.

The best strategy was the strategy that took over the entire population.

Result

15 strategies (including ALLC and ALLD) were submitted in the first tournament and 63 in
the second tournament.

In both tournaments the winner was TFT



them accidentally changes her strategy from C to D.

YouuCCCCDCDCDCD
Me: CCCCCDCDCDC

Drawbacks of TFT
Susceptibility to Mistakes: Two players playing TFT can end up with a very low payoff when one of

A mistake on your part resulting in changing your move from C to D in the fifth round of the game will
change the state from mutual cooperation to alternating rounds of cooperation and defection and lead to a
very low net payoff for both players.

Payoff for a TFT player in the presence of a small amount of behavioral noise is

E(TFT,TFT) = (a+b+c+d)/4 < a since a> (b+c)/2 and a>d

TFT is susceptible to invasion by ALLC by random drift which is susceptible to invasion by ALLD
A population of TFT players can eventually be invaded by ALLD players.

B TFT

EEEmEE
EEE)E
EEEmE

A ALLC

—)

Random Drrift

@ ALLD

AAMAAA

AAMAAA
AAMAAA

AAMAAA




Average Payoff to each strategy in an iterated PD game between two strategies

Use the adjacent NetLogo program to answer the following questions

=]

PD Two Person lterated.nlogo

Questions to Consider

+ How does the average payoff to TFT and ALLD change as the number of rounds increases ?

+ Is there any difference in the average payoff behaviour in TFT vs TFT compared to TFT vs
TFTT, TFT vs ALLC, ALLC vs ALLC ?

+ Is there any difference in the average payoff to ALLD in TFT vs ALLD compared to TFTT vs
ALLD ? How does the average payoff to ALLD change as the number of rounds increases ?

4+ Compare the average payoff to ALLD & RANDOM in ALLD vs RANDOM with the average
payoff to TFT & RANDOM in TFT vs RANDOM after several rounds of the game ?

Which strategy TFT or ALLD gets a higher average payoff against RANDOM ?
In which game does RANDOM get a higher average payoff ?
Compare the average payoff to ALLD in ALLD vs RANDOM and ALLD vs TFT games.

shows how

The average payoff to each strategy depends on other strategies present in the population



Average Payoff when different strategies interact in a finite population

|

PD N-Person lterated.nlogo

+ There exists a finite population of distinct strategies

+ Each strategy interacts at random with itself or another strategy

+ The cumulative and average payoffs are calculated after each interaction

Shows how the average payoff to each strategy changes as a result of interaction with different
strategies in the population.

NOTE

There is no evolution of population structure since the total number of players playing a given
strategy remains fixed.



Can a strategy be found that is more cooperative than TFT and

(i) Resists invasion by a more selfish strategy

(ii) Does not suffer from the drawbacks of TFT



Reactive Strategies

A Reactive strategy is a Stochastic strategy that takes into account the opponent’s last move to
determine its move (C or D) in the current round.

If the opponent cooperated in the last round, it chooses to cooperate with probability p and defect with
a probability (1-p)

If the opponent defected in the last round, it chooses to cooperate with a probability g and defect with a
probability (1-q)

The Reactive Strategy S(p,q) can be represented by a point in an unit square. The vertices of the unit
square correspond to the deterministic strategies ALLD (S(0,0)); TFT (S(1,0)); ALLC (S(1,1)) and
reverse of TFT (S(0,1))

The repeated Prisoner’s Dilemma between two reactive strategies is a Markov Chain on the state space
(CC, CD,DC, DD).

A Markov chain is a system that undergoes transitions from one state to another among a set of finite and

discrete states. Probability of finding the system in the next state depends only on the current state and not
on past memory.

Last Round Current Round
My move Opponent’s Move My move
State 1: C C ?
State 2: C D ?
State 3: D C ?
State 4: D D ?

For each of these states visited in the /ast round of the game, what is the probability that the current
round will be found in the states CC, CD, DC, DD ?



Algorithm for finding the Reactive Strategy with the highest cumulative payoff

1. Generate n distinct Reactive Strategies that are distinguished by n distinct set of values of
(p,q). Start with an initial configuration in which all the reactive strategies have the same

frequency 1/n
2. Calculate the n x n payoff matrix E(S1*, §2*)

3. Use the replicator equation to study the evolution of population structure to determine
which of the n strategies eventually remain in the population.

d,X,'- ¢:Zfixi
dt =X/, =9 f =E(S;.8)x,

4. Is there any cooperative strategy that is better than TFT in surviving against a selfish
strategy like ALLD ?



Competition between ALLD, TFT and ALLC

ALLD is the only ESS and x_ALLD =» 1 for any non-zero /nitial values
of xO_ALLD, xO_TFT, x0_ALLC

% —_—
ALLD vs TFT game: X pr decreasesas N1 increases
TFT — —
ma—d)+2d—-b—-—c 2m-—1

_ Both TFT and ALLD are an ESS

I ma—d)+(d-c) m-2
T Fie—d)+(d-c)  2(m-1)

Generated using Dynamo3S by Prateek Verma

A small frequency of ALLD can invade TFT and ALLC if the frequency
of XO_ALLC > xT_ALLC

XTac is the critical threshold value

XTaLLc fncreases as m increases




Competition between ALLD, TFT and GTFT (without noise)

plot of frequency versus T
T J

| = 1 Obtained by solving the coupled set of replicator
=i equations giving the time evolution of the frequencies
of ALLD, TFT and GTFT

There is no behavioral noise in the system
GTFT cannot replace TFT

ALLD cannot replace TFT unless x_TFT is very small
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R Generated using Dynamo3S by Prateek Verma

O Represents unstable equilibrium state

@ Represents stable equilibrium state

Arrows show how the frequencies change over time & attain the
final equilibrium state
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Coloured contours indicate how fast the frequencies are changing in
the region.

red-fastest rate of change
blue-slowest rate of change




Competition between ALLD, TFT and GTFT (with noise)

Generated using Dynamo3S by Prateek Verma

GTFT can invade only in the presence of both TFT and ALLD provided x0_TFT is not very small
In a population consisting of only GTFT and ALLD, both strategies are an ESS
ALLD cannot replace GTFT unless xO_GTFT is small



Strategies with last round memory

These are Stochastic strategies which decide to cooperate or defect based on both player’s move in the
last round of the game.

Each strategy is characterized by the probabilities (p1,p2,p3,p4) for cooperating in the current round
depending on whether the state in the last round was CC, or CD or DC, or DD.

Competition between two such strategies S1(p1,p2,p3,p4) and S2(pl1’,p2’,p3’,p4’) in a repeated
Prisoner’s Dilemma game is a Markov Chain on the state space CC,CD,DC,DD.

TFT: p1=p3=1, p2=p4=0. GTFT: p1=p3=1, p2=p4=1/3

Is GTFT still the best strategy (i.e. strategy with the highest cumulative payoff) when
strategies with last round memory are included ?

Probability definitions for Strategy S1 my move

pl: Probability of me cooperating in the current round when the state of the game in the /ast round was CC
p2: Probability of me cooperating when the opponent defected in the /ast round i.e. the state was CD
p3: Probability of me cooperating when the opponent cooperated in the /ast round i.e. the state was DC

p4: Probability of me cooperating in the current round when the state of the game in the /ast round was DD

Probability definitions for Strategy S2 opp move J
: Probability of opp cooperating in the current round when the state of the game in the /ast round was CC

4

pl
p2": Probability of opp cooperating when the opponent defected in the /ast round i.e. the state was DC
p3": Probability of opp cooperating when the opponent cooperated in the /astround i.e. the state was CD

p4’: Probability of opp cooperating in the current round when the state of the game in the /ast round was DD

my move J



Strategies with last round memory

Algorithm for finding the Stochastic Strategy with last round memory having the
highest cumulative payoff

1. Start with a homogeneous population consisting of a stochastic strategy defined by
pl=p2=p3=p4=1/2

2. Every 100 generations introduce a new strategy that is chosen from a random distribution
of strategies.

3. Solve the eigenvalue equation with the new strategy to determine the probability of finding
the game in one of the 4 possible Markov states at equilibrium.

x=xT
E(S,,S,) =ax, +bx, +cx, +dx,

4, Using the replicator equation, evolve the system to check whether the new strategy
becomes extinct or coexists with other strategies or gets fixed in the population by eliminating
all other strategies.

5. Is there any cooperative strategy that is better than GTFT in surviving against ALLD-like
strategies ?



WSLS : p1=1,p2=p3=0,p4=1

Win-Stay, Lose-Shift (WSLS) Strategy

Strategy : Cooperate when both cooperates or both defects in the last round; otherwise defect.

WSLS strategy decides to keep playing the same move if it is winning i.e. getting a payoff of a or ¢ but
changes its move in the currentround if it is loosing i.e. getting a smaller payoff of b or d in the /ast

round.

WIN
Last Round

My move C

Opponent’s
Move

My Payoff a

Current Round

My move C

Last Round Current Round

My move D My move D

Opponent’s
Move

My Payoff C

LOSE
Last Round
My move C
Opponent’s
Move

My Payoff b

Current Round

My move D

Last Round Current Round

My move D My move C

Opponent’s
Move

My Payoff d



Advantages of WSLS Strategy

1. WSLS has error correcting ability. Cooperate when both cooperates or both defects in the last round;
otherwise defect.

WSLS : CCCC D DCCC
WSLS : CCCC C DCCC

L

v

Error —> Error corrected because strategy is changed to increase payoff

2. WSLS dominates ALLC in the presence of behavioral noise and therefore wont change to ALLC via
random drift.

WSLS : CCCC D DDDD
ALLC : CCCC C CCCC

Error in WSLS increases its payoff and is maintained to exploit ALLC



3. Competition between WSLS and ALLD

WSLS:CDCDCD CD
ALLD :DDDDDDDD

WSLS cooperates with ALLD in every other round

WSLS ALLD
WSLS ma (m/2)(b+d)
M=
ALLD | (m/2)(c+d) md

WSLS is stable against invasion by ALLD iff E(WSLS, WSLS)>E(ALLD,WSLS) & a > (c+d)/2

Note: ALLD is also an ESS since E(ALLD,ALLD)>E(WSLS,ALLD) = d>b which is always true



Competition between WSLS and any two of ALLD, TFT, GTFT (with noise)

WSLS vs ALLD vs TFT

TFT

WSLS vs TFT vs GTFT

WSLS vs ALLD vs GTFT




Competition between ALLD, TFT, GTFT and WSLS (with noise)

Generated using Dynamo4S by Prateek Verma

WSLS dominates ALLC and resists invasion by ALLD



Dynamics in Strategy Space

TFT =) GTFT
ALLD ¢ummmmm ApC
I (I,: ~ ~ \
~ 5 ::: ~ < -
~~<r WSLS



Games in Finite Populations

C D
b<c and a>d
C a b )
For the Payoff Matrix M= 0 5 No. of C players =1
C

No. of D players = N-i

Prob. that C interacts with another C = (i-1)/(N-1)
Prob. that C interacts with another D = (N-i)/(N-1)
Prob. that D interacts with another C = i/(N-1)

Prob. that D interacts with another D = (N-i-1)/(N-1)

Expected payoff to C when it interacts with C = a(i-1)/(N-1)
Expected payoff to C when it interacts with D = b(N-i)/(N-1)
Total expected payoff for C : F, = (a(i-1)+b(N-i))/(N-1)
Total expected payoff for D : G; = (ci+d(N-i-1))/(N-1)

Define fitnessof Cas : f,=1-w+ wF ; fithessof Das: g = 1-w + w G
w=1 =» strong selection; fithess completely determined by interactions
w=0 =» no selection between C & D

w<<1 = weak selection

fi;>g; =2 F;>G; =2 b(N-1) > ¢ + d(N-2)




Moran Process in Games in Finite Populations

C’s and D’s are picked for reproduction with a probability proportional to their mean fitness and for death

randomly.
Probability of picking C for reproduction and D for death : =a lf )(N_i)
Probability of picking D for reproduction and C for death : =3 =( V-ng, )(L)

. pi,ifl_ i lf,—"'(N_i)g,- N

I

e
=~ [0
e
a
b
~

=

N-1 rs pD— _lﬁ pD_ i=1 gi
1

b
Il
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In the limit w0, Lc¢~  leads to the inequality

a(N-2) + b(2N-1) > c¢(N+1) + d(2N-4) which in the limit N>>1,reduces to| a + 2b > c + 2d

For fixed, a,b,c,d, the above inequality gives a lower bound on the population size N

2a+b+c—4d
a+2b—c-2d

N > Nc N.=

Nc is the minimum size of the population necessary for selection to favour fixation of cooperators



Evolutionary Stability in Finite Populations

If a>c and b>d, C is a strict Nash equilibrium as well as an ESS and selection will always favour fixation of
C and oppose fixation of D in a finite population of any size.

If a>c and b<d, both C and D is an ESS. According to the infinite population analysis, a small fraction of
C mutants cannot invade a population consisting predominantly of D players.

What happens for finite populations ?
1
Fixation of C will be favoured by selection only if o.>% even if F;>G; = N>Nc
1
Fixation of D can still be favoured even if F;>G; provided £,> 5 = N<Nc

Condition for a strategy to be an ESS has to be modified for finite populations.
In a finite population of size N, a strategy C is an ESSw if
(i) A single mutant of any other strategy has lower fitness than C

(ii) The fixation probability of every other strategy must be smaller than the fixation probability of a
neutral strategy and the fixation probability of C must be larger than the fixation probability of a
neutral strategy

C is an £SSw if F,>G, and pc>% and Pﬁ%

D is an £SSw if G;>F; and ,OD>% and Pﬁ%



Fixation Probabilities and the 1/3 Law for w<<1 and N>>1

® -- Unstable mixed state equilibrium

x*=1/3 x*=2/3
P> N PN PN
Pﬁ% Pﬁ% Pr” N
C | @< ® : >@ | D
x=1 E x=0
PPy | PP,
x*;1/2

Risk Dominance: If both C and D is a strict Nash Equilibrium in the conventional sense i.e. if a>c and
d>b then which strategy has a higher fixation probability ?

C is Risk Dominant if P.> P, 2>a+b>c+d whenw<<land N>>1

D is Risk Dominant if ©,> O..

A strategy is Risk Dominant if the total payoff for that strategy is larger than the total payoff for every other
strategy.

The Risk Dominant strategy has a greater fixation probability in the limit w<<1 and N>>1



TFT can Invade ALLD in a Finite Population

TFT ALLD
+(m-1
_ TFT ma b+(m-1)d No. of TFT players = i
For the Payoff Matrix M=
No. of ALLD players = N-i
ALLD | C+(m-1)d md c>a>d>b

According to the /nfinite population analysis, for m > (c-d)/(a-d), both TFT and ALLD are an ESS and
each strategy is stable against invasion by either strategy.

1
In finite populations, TFT can get fixed in the population even if Frer < Gy p provided L~ N

If F, and G; is the fitness of i TFT and (N-i) ALLD players,

ma(i 1)+ (b+(m—1)d)(N —i) _(c+(m-1)d)i+md(N —i-1)

F.= N1 i N-1

Fy = Frer =b+(m-1)d and G,=G, p=(c+(m-1)d + md(N-2))/(N-1)

o L N +D)+d(N-2)-b2N-1)
For w20 and fixed N, O, . y 9ives a lower bound on m: (a—d)(N -2)

When N=2, m>co, When N=3: m>10 When N=4: m>6

+d—-2b
For N>>1, lower bound on m: m > cra—ao = m >3 when a=3, b=0, c=5, d=1

(a—d)



1 J—
For fixed m, p__>— givesa lower boundonN: N > Zma+b+c=-2d(m+1)
N ma+2b—c—d(m+1)
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Evolutionary Graph Theory
Questions

« How does the fixation probability of a mutant change when the population is structured i.e. only
certain members of the population can replace others during the course of evolution.

« If a structured population is represented by a graph, with vertices representing members and
edges representing interaction between corresponding members, is it possible to characterize a//
graphs that have the same evolutionary dynamics.

« Can certain structured populations increase the fixation probabilities of advantageous mutants ?

« Can certain structured populations eliminate the effect of selection ?

. ®
l./

o
k‘/ b . @ ‘é@g\‘

Structured Population Unstructured Population
Not all vertices are connected by an edge

The edges can have different weights There is an edge between any two vertices

i can replace j and j can replace i All edges have the same weight

k can replace i but i cannot replace &



Formulating Evolution on Networks

A graph (network) can be completely specified by a stochastic matrix W=[wj;]

W=[w;] is an N x N stochastic matrix that determines the probability of replacing the j'th
member of the population by the i'th member.

w;; =0 if there is no directed edge fromi toj = offspring of i cannot replace ]

N
ij =1 since the i'th member picked for reproduction has to replace someone
j=1

i. —— o i‘ — ®
® Evolution ®
‘/ ® —— ‘/ ®

k k
O @
J . ® Jj ® [ _
Structured Population Structured Population

Population composition changes as the population evolves but the rules for replacement via the
Moran process remain the same.



Fixation Probability of a mutant that arises in a structured population

Directed Cycle Cycle

The i'th member can only be replaced by the
member preceding it i.e the (i-1)th member.

Fithess of B (blue) = r
Fitness of A (red) =1

Due to the nature of the structured population (only nearest neighbour replacements are
allowed), there can be only one cluster of B's. Fragmentation of clusters into two or more sub-
clusters is not possible.

B 1 _1=1/r
P a1,
=1 .

1+ 4

k=1 i

Fixation probability of B on a directed cycle is identical to the fixation probability of B in the
Moran process (unstructured population)



Fixation probability of a mutant randomly placed on a “Line” graph

Rules of Replacement: Every member is replaced only by the
member preceding it. The last member replaces itself.

If the mutant B arises at any position other than the first position
in the line, it will be replaced by A and become extinct.

Probability that B arises in any positions from i=2...N
is (N-1)/N since there are N-1 such positions.

Probability that B appears in position 1: 1/N
The mutant B will definitely be fixed if it arises in position 1

|
Fixation probability of B: IO 5 N

Fixation probability differs from the Moran process and is
independent of the fitness of members.

o-0-0-0-00

» o o
— > » »
a» » » » »
> > > L >
n » » n
Ll > > >
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Invasion probability of a mutant randomly placed on a “Burst” graph

Rules of Replacement: Every member is replaced only by the
member at the centre with equal probability. The central member
cannot be replaced by any other peripheral member or itself.

If the mutant B arises at any position other than the central
position in the star, it will be replaced by the A at the centre and
become extinct.

Probability that B arises in any positions from i=2...N
is (N-1)/N since there are N-1 such positions.

Probability that B appears in the central position: 1/N

The mutant B will definitely be fixed if it appears at the centre of
the star
1

Invasion probability of B: 0 5 N

Invasion is /independent of the fitness of members and equivalent
to that of a neutral mutant in the Moran process.

Both the “Line” and “Burst” graphs are suppressors of selection

Burst



Graphs which are suppressors or amplifiers of selection

B 1-1/r

pB = W Invasion probability of a single mutant with a relative fithess rin a Moran process
—1/r

If the fixation probability of a single mutant with a relative fitness r on the structured graph G is pG

If ,OG > ,0 3 when r>1 = G is an amplifier of selection. G favours selection over drift

If /OG < pB when r>1 =» G is an suppressor of selection. G favours drift over selection

1

If pG = ﬁ when r>1 =» G is the strongest possible suppressor of selection.
. f‘\ p=1N
O O -0 @
o-0-0-0-0-0 St Y
PR 0-0-0-0-0
O t
®

1

All Graphs with a sing/e root have the same invasion probability: ,OG - N



The Isothermal Theorem

N
T = Z w, T, : Sum of all weights that lead to the vertex.
j

1 A vertex with high temperature is replaced more frequently than a vertex with low temperature
=

Isothermal Graph: All vertices have the same temperature = T Z W =const =1

=1
Isothermal Theorem: The fixation probability of a single mutant on a graph G is equivalent to the
fixation probability on an unstructured graph (Moran process) iff G is an isothermal graph.

V., = 1 > vertexiis occupied by B, vV, = 0 > vertexiis occupied by A

m = sz‘ =>» No. of B’s in the population
i=1

rZZ wyv,(1-v)) 2.2 wyv =)

p pm,m—l .
m,m+1 rm—l—N—m rm+N m
- . | g
Fixation probability is the same as the Moran process if S
pm,m+l r

22wy =v) =2, 2 wv vy 2. 2wy =22 wy=v,)
The above equation is valid for all i. SpeC|f|caIIy for a particular i=k such that vk —1 vV, = =0 forall I#k

> 4 ijkzzwkj Since ZWk =1 > T —ZW
J J



Alternative way to represent evolutionary dynamics on Graphs

® [ _
o
/ ® O / °

® ®
k k

) o
J O o J O
Structured Population Structured Population

Instead of picking a vertex for reproduction and another vertex (which it can replace) for death
Pick an Edge (ij) with probability proportional to (w; x f_i)
f_i - fitness of the member at vertex i

Arrows are no longer necessary: weight w;; contains information about which memb?vr replaces which

W=[w;] need not be a stochastic matrix. w;; can be any non-negative number Z Wi # 1
j=1

Fixation probability is same as that of a Moran Process in unstructured populations if the graph is a circulation i.e.
Z Wik = Z Wi
J J

Every Isothermal graph is a Circulation but not every Circulation is Isothermal



A single mutant B appearing in a graph with multiple roots can never get fixed .\
since it cannot replace A located in one or more of the multiple roots. -0 _,.\
A A

If a mutant appears at one of the roots, the lineage generated can never become @—-@—-@®—-@®—@

extinct. Allows coexistence of both A and B in the population. Graph with multiple roots

A root is a vertex with no edge pointing to it PS
. ) . . o o ! @
Star Graph is an amplifier of selection: For r>1, a single mutant with relative fitness pa o
r has a higher fixation probability that is equivalent to the fixation probability with el . AN
relative fitness r2 in a Moran process (unstructured graph) in the limit of /arge N ® -
O
1—1/72 Star

B,star - l_l/er

A compartmentalized graph which has a complete sub-graph is a suppressor of
selection: For r>1, a single mutant with relative fitness r has a lower fixation
probability than the corresponding fixation probability in a Moran process
(unstructured graph).

N=N;+N, ; where N1 is the size of the complete (unstructured) sub-graph and N2
is the size of the second component.

P 1 1-1r
A e
1+Z;H7/k
i




The Funnel graph is a strong amplifier of selection

ol
O A
) o A
y oy oy .

/

)

fs

\s(
N\
N

\\%

The Funnel graph has k+1 layers labelled j=0,1,...k

The zeroth layer has just one vertex and the layer j has m”~j vertices

Edges originating from vertices in layer j lead to vertices in layer j-1

Edges originating from the single vertex in the layer j=0 lead back to vertices in the layer j=k

In the limit of /arge k and /arge m,

pG—>1 forr>1 pG—>O forr<1

Reference: Lieberman, Hauert, Nowak; Evolutionary Dynamics on Graphs, Nature 2005



Evolution of Cooperation on Graphs

Image Source: Wikipedia

Constraints on the Theoretical Formulation
A Caley Tree/Bethe Lattice

% Regular graph with each node having k neighbours

%+ Graph does not have any loops

Caley Tree/Bethe Lattice with k=3

d Theoretical analysis valid for
% N>>k
% Weak selection limit holds i.e. w<<1 when separation of time-scales is possible

% Uses the pair approximation which is valid only for Bethe lattices i.e. graphs without
any loops.

Pair Approximation =» frequencies of larger clusters obtained from pair frequencies



Evolution of Cooperation on Graphs

Relations between stochastic variables for evolution of cooperation on graphs

ptpp=l1=py=1-p,

Qs t 985 =G5+ 944 =1
Pas =4 4uP 4

Pap =94l = 4ap(1=D )

Pz =43P =U—q,,)1-p,)

p
Ppa = Pap = 9pjaPs = 4u8Ps = 9up = (1- q 44 )(I_—A)

A
Only 2 of the 6 stochastic variables are independent. P 4> P a4

AIM: Obtain dynamical equations in terms of these variables and solve them under certain
approximations to obtain the condition for the fixation probability of A (£4) > 1/N

Key approx.: Pair frequencies equilibrate in a much faster time-scale than individual frequencies
in the weak selection limit (w<<1)



Illustration of the Death-Birth Process : Updating a B-player

‘\

k=4 ) —

—eo

. Focal player selected for death is B

‘ A-neighbour of focal B selected to replace B has payoff: P, =b+3q,,a+3q, b

‘ B-neighbour of focal B not selected to replace B has payoff: B, =d +3¢,,d +3q ¢

f, =1—w+wP, : Fitness of A-neighbour of focal B f =1—w+wh; : Fitness of B-neighbour of focal B

kit
kAfA + kB.fB

Probability that ‘ replaces the focal . ;



Illustration of the Death-Birth Process : Updating an A-player

‘\

k=4 9 —
‘\‘

. Focal player selected for death is A

‘ A-neighbour of focal A not selected to replace A has payoff: P, =a+3q A4dt 3qB| 4b

‘ B-neighbour of focal A selected to replace A has payoft: Py =c+3q,,d +3q 5

g, =1—w+wP, : Fitness of A-neighbour of focal A &5 = 1—w+ whP, : Fitness of B-neighbour of focal A

kyf
Probability that ‘ replaces the focal . : I f B Ii f ;kA +kB =4
_|_
AJ A BJ B



Condition for Spread of Cooperation on Networks
Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

1 b
Death-Birth (DB) updating: Pc” N~ Por > P k
Imitation (IM) updating: Payoff of focal individual being updated also matters.

Focal individual (F) compares her fitness with her neighbours.
F retains her strategy if f_F > f_neighbour (neighbour is randomly selected)
F imitates neighbour with probability proportional to neighbour’s fitness if f_F<f_neighbour

f_F = 1-w+w(kac+kgd) where f_F: fitness of the Focal B-player with ks A-neighbours and kg B-neighbours

kAfA
Kafatkpfs+ fr

kyf.
Probability that a focal B is replaced by an A-neighbour in Death-Birth updating: k f A_”i I
AJ A BJ B

Probability that a focal B-player adopts the strategy of an A-neighbour:

Compare with

g_F = 1-w+w(kaa+ksb) where g_F: fitness of the Focal A-player with ka A-neighbours and kg B-neighbours

kygs
k,g +ksgs+gr

Probability that a focal A-player adopts the strategy of a B-neighbour:

1 b
P."" P > —>k+2
C N D c
Ratio of Benefit to Cost of cooperation determines whether selection favours spread of cooperation and fixation

of cooperators



Condition for Spread of Cooperation on Networks
Ohtsuki et al. A simple rule for evolution of cooperation on graphs and social networks; Nature 441 (2006) 502

1
Birth-Death (BD) updating: 0O~ N > L. mmm) Sclection never favours fixation of cooperators

Fixation probability, p

0.014
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0.006
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0.002
0.001

a Cycle b Lattice ¢ Random regular graph d Random graph @ Scale=free network
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1
Arrow indicates b/c=k. Theoretical Prediction : b/c > k 2 £~ v~ Po»

Discrepancy with theoretical prediction observed for non-regular graphs
Discrepancy increases with increasing k but decreases with increasing N

N=100



Evolutionary Games on Networks with Dynamic Linking
Ref: Active Linking in Evolutionary Games; JTB 243(3):437-4443 (2006)

e

Two Relevant Time-Scales

Time-Scale of Linking Dynamics: Ta Time-Scale of Strategy update Dynamics: T
T >>T, T <<7T,

l l

Effectively Static Network Links equilibrate before strategy updates occur

e






Spatial Games

Rules for Deterministic Spatial Games . - - . . Payoff matrix:
1. The payoff to each player is given by the total | A B
payoff obtained by playing each of its eight 7a+1bg4a+4bpEEu
neighbours.

. ‘4c+4d) 1c+7d

2. Rules for updating a cell are deterministic: The focal The focal cell will be
(central) cell is replaced either by itself or one of the - . taken over by whoever
eight neighbouring cells (Moore neighbourhood) has the highest payoff

) . ) among the 8 ne|?h ors
depending on which has the highest payoff.

HEEER
3. All cells are updated simultaneously (synchronous

updating) . Cooperator . Defector a=1,b=0,c=b,d=¢

4. Periodic boundary condition is used to ensure all
cells are treated in the same way and there are no
boundary effects.

b-Measure of benefit gained from exploiting an
altruistic partner relative to the benefit gained from
cooperating with an altruistic partner

The survival of a cell depends on its own strategy, the strategy of
its eight neighbours as well as the strategies of their neighbours . . . . .

= 25 cells in all
. ] ]
As =0, the focal cell (D) has a total payoff = 4b since it is

surrounded by 4 C's and 4 D’s. . u .

If 4b>7, central cell remains a Defector in the next generation . . .

' IDE N
If 4b<7, central cell transforms from Defector to Cooperator in
the next generation . . . . .




The Moore and Von-Neumann Neighbourhood

EEEEE
EEDE N
BN .
EEDENR
EEEEDE

HEED

L[@)]
B E

9-cell Moore neighbourhood

Rules for updating a cell: The focal (central) cell is
replaced either by itself or one of the eight
neighbouring cells (Moore neighbourhood)
depending on which has the highest payoff.

The cells diagonally adjacent to the focal cell are
also part of the neighbourhood.

B@n
5-cell Von-Neumann neighbourhood

Rules for updating a cell- The focal (central) cell is
replaced either by itself or one of the four
neighbouring cells (Von-Neumann neighbourhood)
depending on which has the highest payoff.

The cells diagonally adjacent to the focal cell are
not part of the neighbourhood.



b the only parameter determining the evolution of

Initial Condition: Half the cells are randomly the spatial distribution of C's and D’s
chosen to be cooperators and remaining half as 3
defectors. b=1.10 b=1.15

Colour Code:

Blue : C that was C in the previous generation.
Green: C that was D in the previous generation.
Red: D that was D in the previous generation.
Yellow: D that was C in the previous generation.

b=1.10: Oscillation from isolated single defectors
to squares of 9 defector and then back to single
defector.

b=1.24: Larger lines of still mostly disconnected
defectors are observed.

b=1.35: Lines of defectors now form a network
with oscillating islands (yellow and green
regions) around lines of defectors.

100x100 Lattice



b=1.55: Mostly static network of defectors in
large islands of cooperators.

b=1.65: Defectors have attained majority by
replacing most of the cooperators. Configuration
with dynamic clusters of cooperators seen.

=]

Altruism.nlogo

b=1.70: Static pattern showing a few clusters of
cooperators in a sea of defectors. Lines of
defectors now form a network with oscillating
islands (yellow and green regions) around lines
of defectors.




[ Cooperators

What is the likelihood that a single Defector mutant will take over a population consisting of Cooperators ?

n gh>8 8>50>7 755p>6

HEEEE
8l7f7] | |

£

If 7<8b<8, cell in the middle will remain C

HEEEE EEOEE
8] | | | M7fefs) |
HEEEE NSEENN
HENEEE EEEEN
HEEEE EEEEN

If 8b>8, cell in the middle will become D, single D in the
centre expands to give a cluster of 9 D's.

HEEEN
H + N
HEEEE

HEEEEE EEEEE EEEEE
5b>8
6>5b
9D further growth

5b<6: Red 7>5b>6: Red 8>5b>7: 9D 5b>8: Blue
cell with cell at the configuration cell with

payoff 5b corners with remains payoff 7

is replaced payoff 5b unchanged replaced by

by blue replaced by red cell with
cell with blue cell with 9b>3D payoff 5b:

ff 6: ff 7:
payo payo 9D=>»25D

9D=>1D 9D=>5D



Cooperators[QWELlE]

A single cooperator can never survive in a population of defectors and is

immediately eliminated.

Cooperators can only survive in clusters.

Sometimes the cluster of cooperators can grow in size.

2b<3: Red 3/2<b<5/3: 5/3<b<8/3:

cells with Red cell with 9C configuration
payoff payoff 3b remains
2b,3b are replaced by unchanged

replaced by  blue cell with
blue cells payoff 5: C
with payoff  cluster expands
3,5: along central

9C>25C axis but_ not
along diagonals

9C=>21C

9C=>9C

b>8/3: 9C
cluster
disappears

9C=>0C

ED@n =
EDDDON




b-dependence on Spatial Evolution of Cooperators and Defectors

(i) b<8/5: Only C clusters keep growing; Cooperators dominate
(ii) b>5/3: Only D clusters keep growing; Defectors dominate
(iii) 8/5<b< 5/3: Both C and D clusters keep growing; Co-existence between cooperators and defectors

In (i) and (ii), final frequency of cooperators and defectors depends on the initial configuration.

In (iii) final frequency is independent of initial configuration. The pattern is dynamic but the final
frequency remains nearly constant at 30% cooperators =» Dynamic Equilibrium

Dynamical Fractals and Evolutionary Kaleidoscopes

For 8/5<b<5/3, configuration starting from a single defector shows repetitive (fractal-like) patterns.

If 5b>8, D wins at the corners and red cell with payoff 5b replaces the blue corner ..n-

cell with payoff 7 ..-.-.

If 3b<5, C wins along lines and red cell with payoff 5b is replaced by blue cell with -...-.

If 8/5<b<5/3 = 1.6<b<1.67, C wins along lines but loose along irregular boundaries.

A single D grows to form a 3x3 square.

payoff 5



t=64




A “walker”

| HEEEEEN

Two walkers can collide and generate two large clusters of cooperators. .-....

A walker is a cluster of 10 cooperators moving in a direction shown by the arrow. -.
sl sfe]e] |
b 26 3 sb [ 3
HEEEERnE

[ ]

8/5<b<5/3

Invasion by Cooperators

A collision of two “walkers” can lead
to a “big bang” of cooperation

[

3b<5 since b<5/3
=> 2b<5

2b>3 since b>1.6 implies
C[payoff=1]=>D




Parameter region: 3/2<b<8/5
Initial Configuration: Single cluster of 3x3 C’s

Increasing b

Parameter region: 8/5<b<5/3
Initial Configuration: Single cluster of 3x3 C's




Summary

A structured population can facilitate survival and sustenance of cooperators
even under conditions that are unfavourable for their survival in a mixed-
population scenario

Cooperators survive by forming clusters (= strength in numbers) and the
growth or shrinkage of the clusters depend on interactions at the boundary of
the cluster

The extent of survival and spread of cooperators depend on the relative
advantage that a selfish agent has over a cooperator/altruist

The greater the advantage, the lesser is the likelihood of survival of
cooperators even in structured populations




Connection between ABS models and Stochastic Reaction-Diffusion Models

Fully Stochastic Agent-Based Simulation Models

Sometimes an exact correspondence exists

Stochastic Reaction-Diffusion (SRDE) Models

Exact correspondence

!

Results of an SRDE model are completely consistent with that of the ABS model for
moderate to large population size (N)

Correspondence can be established for a Rock-Paper-Scissors Game

!

A useful framework for understanding the conditions for multi-species coexistence in an ecosystem



Rock Paper Scissors: 3x3 Game with Cyclic Domination

(Example of an Evolutionary Game with non-transitive interactions)

The Rock-
Paper-
Scissors
game

Neutral oscillations

Det[A]<O =» aiaras>bibybs

/

—>
Damped oscillations

to a stable equilibrium (jo )
>

Increasing oscillations
—a, b to a heteroclinic cycle

0 —dy Det[A]>O -> 818283<b1b2b3




Local dispersal promotes biodiversity

in a real-life game of
rock—-paper-scissors

Benjamin Kerr*, Margaret A. Rileyt, Marcus W. Feldman*

& Brendan J. M. Bohannan*

A bactericidal model

¢ Local neighbourhood

851 ¢ R

§ A

2 3 S

-

82

o 17

s)

and 0 T T T T 1

0 1,000 2,000 3,000 4,000 5,000
Time
d Global neighbourhood

© 5 R

§ 4 Ja—

g 3 ’Q“\_

87 M\,

C - colicin producing E.coli
S - colicin sensitive E.coli
R - colicin resistant £. coli

4,

Focal lattice site (F) chosen at random

<> : : :
0 100 200 300 400 500

Time

Local vs Global Update Dynamics

If F is empty, it is filled with a cell of type i=C or S or R from its /ocal
neighbourhood (8 nearest neighbours surrounding F) or global
neighbourhood (anywhere in the lattice except the focal site) with a
probability proportional to fraction (f_i) of cell-type (i) present in the

neighbourhood.

If focal lattice site F is occupied by cell-type i, it is killed with probability Al.

A.=033 A,=03125

Ag

=Ag, +7f-3A4,=0.25

7 = Measure of toxicity of colicin



Rock Paper Scissors on a Spatial 2D Lattice with Diffusion Update Rules:

Selection (rate o) Reproduction (rate u) L =200 Choose one Of 3
.B_‘.. .._’.. : reactions with the
. C _... .._... ' following

probabilities

B B

b Reproduction (rate u)

.

Reproduction

EEE EEE p—
=
Selection (rate o) < . .. . . .
. .. Selection
Exchange (rate £) O
U+o+¢€
May-Leonard Model Exchange
g
AB -7 Ao, Ao+ AA ot
bBe . B'f ’ Bc y BB Effect of Lattice Size on Pattern Formation
¢cA —Co, Ce 449 Shows important role of noise in perturbing the
Selection Reproduction patterns for small values of L

Alternative Model
AB 25 A0, BC 2By, cA-Zs 00,
AB %5 AA, BC 23 BB, CA-30C, o {B u {A . u {A
A) 45 AA, B L BB. 00 L cc, |



Relation between Deterministic and Stochastic Spatial Models of Rock-Paper-Scissors Game

Deterministic

Noise incorporated through a Gaussian
noise term in the evolution equations

Partially Stochastic represented by Stochastic PDE's

!

Fully Stochastic Agent-Based Simulations (ABS)



Relation between the Master Equation and SPDE's

Master Equation

Kramers-Moyal expansion of Master
Equation to second order in (3s) i.e. O(1/N)

Fokker-Planck (FP) Equation

|

Stochastic Differential Equations SDE's

Incorporate diffusion through exchange process
to leading order in (6s=1/N) i.e. (1/N)°

Partially Stochastic Model represented by Stochastic PDE’s
1

\/ﬁ)

=> Noise due to number fluctuations incorporated to O(



Source of Noise in SPDE’s

% Noise due to number fluctuations arising from birth-death processes

b

\W)

Appears in SDE at O(

% Noise due to number fluctuations arising from exchange processes
0
The Diffusion term to leading order i.e. in the absence of fluctuations i.e. 0( %V)

7= gi[{avw)—am}+{a<r—5r>—a<'”>}]

r

»
»

r—or — 7+ Or
@ @ @
< ——

Noise due to number fluctuations arising from exchange processes comes from the term

B(r,r") = % 0.0. [5(r —rNa(r)(1- a(r))]

Since noise is proportional to ./ B(r,r") it appears at ()(i) and can be ignored
N



Effect of Increasing Diffusion Coefficient: Loss of Diversity

T -
3% 10-6 3% 105 3x 10~ .
M

M =2 € N~1 = 4D : Area covered by a random walker in unit time in 2-dim
D : Diffusion Coefficient

——rrrrrT + T—r—T—TTTTT "_::FW
Biodiversity
" 0.8F
e
z
3 06F
8
a
_5 0.4+ 4
c oo o —&
w 02+
ot
. Uniformity
0 oY : MY | : N Ry . .
1x10-5 1x10-4 M, 1 x 10-3

Mobility, M

Reichenbach, Mobilia, Frey; Nature 2007, Journal of Theoretical Biology 2008



Pattern Formation without and with Noise
PDE

Stochastic Simulations
vii o

D=1x10"9 D =23x10"% D=1x10"?




Ways in which Cooperation can evolve

1. Repeated interactions leading to evolution of cooperation due to behavioral book-
keeping

2. Direct Reciprocity as manifest in the success of TFT-like strategies

3. Indirect Reciprocity: Reputation (as a cooperator or defector) determines the
likelihood of being helped by others

4. Structured populations can facilitate survival and spread of altruistic behaviour

Altruists interacting more often with each-other than with non-altruists can acquire larger payoffs

l Positive assortment

Can be facilitated by Kin-recognition




Evolution of Cooperation: The effect of interactions with kin
McElreath & Boyd (Chapter 3)

A N

A- Altruists (Cooperators), N — Non-altruists (Defectors) A b-c c

Pr(A|A) — probability that an altruist interacts with another altruist b 0
N

Pr(A|N) — probability that a non-altruist interacts with an altruist
b — benefit to the recipient

Altruists will increase in frequency if c — cost to the donor

{Pr(A|A)—Pr(A|N)}b >c

Altruism can evolve when A’s are more likely (than random) to interact with other A’s than with N’s

If Pr(A|A)=Pr(A[N), altruism cannot evolve regardless of the benefit (b) it confers since the cost ¢>0

Kin Recognition: One mechanism by which animals recognize and preferentially interact with kin
= A is more likely to interact with A and N is more likely to interact with N

Kin recognition requires that the relation between two individuals in the population must be
incorporated while calculating the probability of interaction between them.



Inclusive Fitness

Altruistic behaviour (phenotype) encoded in genes (genotype).

Common

Ancestor

- - - - - = - - (N)
Kins can share the altruism gene if it is passed onto each individual by |

a common ancestor in which the altruistic gene arose.

An allele coding for altruism can selectively help other copies of itself ~ @) » @ C R
found in kin if altruistic behaviour is preferentially directed towards kin

Helps in explaining the evolution of social insect societies where the workers are infertile and hence has zero
reproductive fitness.

Requires redefinition of fitness.

Inclusive Fitness: fl = F ; + Z F o 3 >
0

|—¢

— : Coefficient of relatedness
Individual Fitness between i & p

A4
Fitness of p’th relative

The inclusive fithess can be nmon-zero even when the individual (reproductive) fitness is zero



Hamilton’s Rule

Assume individuals interact in a Prisoner’s Dilemma Game

Probability that two individuals possess the same (A or N) allele depends not just on the frequency (p) of
allele in the population but also on whether the two individuals are related.

Probability that the two individuals are related by common descent = r— coefficient of relatedness

Pr(N|A) =
Pr(A|N) =
Pr(N|N)

Pr(A|A) = r(1) + (1-r)lp

!

If the two individuals are related, If they are not related, both can
both possess the altruism allele still possess the altruism allele
with probability 1 with probability p
r(0) + (1-r)(1- v
( ) ( )( p) Haploid kin-selection model
I‘(O) + (1-r)p >— Altruism phenotype specified Pr(A|A) + Pr(NJA) = 1
by a single allele Pr(N|N) + Pr(A|N) = 1
r(1) + (1-r)(1-p)

When r=0, Pr(A|A)=p; Pr(N|A)=1-p; Pr(N|N)=1-p; Pr(A|N)=p =» Random interaction
Whether A interacts with another A depends only on the frequency (p) of A

{Pr(A|A)—Pr(A|N)}b>c | mmmmp | rb>c

Hamilton’s Rule for altruism to evolve



Genealogy and “Coefficient of Relationship” between Kin

o<
NN

D and E are siblings : What is r_DE ?

Count number of steps required in going from D to E via the common ancestor

Multiply each step by (1/2) and sum over all possible independent paths between D & E to get r_DE
Two independent paths : D=>A=>E or D=>B=>E, for each path two steps are reqd. to go from D to E
r_ DE = (1/2)"2 + (1/2)~2 =1/2

G and H are cousins : What isr_GH ?
Two independent paths: G=>D=>A=>E=>H or G=>D=>B=>E=>H; for each path 4 steps are required
r GH =(1/2)"4 + (1/2)"4 =1/8

Valid for diploid organisms where each of the 2 alleles at a locus has an egual/ probability of being inherited.
This explains multiplication by (1/2) for every step.




Heuristic derivation of Price Equation

Zygote | | Adult | mm) | Zygote | mE—_p | Adult

\ Time: t } \ Time: t+1 }

! !

A: possess the altruisim allele; B: does not possess the altruism allele (cheater)

Probability that a zygote A survives to adulthood o to the mean fithess of A (F,) in the population
# A-adults that survive at time t: NpF,

F,Np _ PF,

Frequency of A-adults at time t: p' = FANp N FBN(I B p) = =

Assuming asexual reproduction and each adult produces z-zygotes at time t+1

Frequency of A-zygotes at time t+1: (#4_ adults)z p'= pr,
(#A_adults)z+#B __adults)z pF,+(-p)F,

, F — pw _ _
ApEp—p=pAwp mm) WAp=pF,—pw=p(l-p)F,—Fy)

2 WP, ;

» Total fitness of Altruism alleles in the population

r,

ZP,- » Total frequency of Altruism alleles in the population

i



Price Equation and Rediscovery of Hamilton’s Rule
Ref.: Ch.3 of "Mathematical Models of Social Evolution”

wAp = E(p;w;) — E(p,)E(w;) = cov(w,, p;) Price Equation

Assumption 1: Assumption of additive fitness

. +vh—h Linear approximation for fitness is valid when selection is weak i.e.
W, = fo Vi i€ when benefits accrued from or costs associated with altruism are small
COV( V., p.) y; — Probability that the i'th member receives aid (Recipient)
l l
2 > h, — Probability that the i‘th member provides aid (Donor)
cov(h;, p;)
COV( h p ) =k >0 The likelihood (h;) of being a Donor of an altruistic act has to be positively
i° i

correlated with the frequency (p;) of the altruistic gene in the member

Assumption 2: Assumption of Linear mapping between genotype and phenotype

y,=a+ kp ; y; — Phenotype which determines whether the i‘th member receives aid
h,=a+kp, h,— Phenotype which determines whether the i‘th member provides aid
cov(p;, p;)
JrLi
b =bf(p;,p;)>c
var(p,)

Slope of the regression line of p; on p; (i.e. Regression coefficient) determines the spread of altruism



To what extent does the donor’s genotype predict the recipient’s genotype ?

Altruism can spread if the donor can distinguish between Altruists and Non-
altruists and is more likely to help Altruists than Non-altruists




Assumption 3 : Assumption of no selection for the altruism allele

Key Question: To what extent does interaction between kin aid in spread of altruism ?

B Expectation that the altruism allele is present in the j'th member
E(p; | p)=E(p)+pB(p;1P)IP:= P} (Donor) giventhat it is present in the i'th member (Recipient)

r — fraction of genes identical by descent (IBD) in both members i and j.
P pp — fraction of genes IBD that are altruism genes

P JIBD ~ fraction of genes that are not IBD (i.e. not related) but are altruism genes =p

Altruism allele will be present in both i and j if
(i) i and j are related by common descent from a single common ancestor
OR

(i) i and j are not related but possess the altruism allele by chance because of the frequency of the
altruism allele in the population.

If p; =0 = p;;p =0;

E(p; | P)=1P;p +(A=1)P, p
J J.IBD J-IBD If p; =1 = p;p =1; for HAPLOID models

L_Eplp)—p _
pPi—P

B(p;,p;)=br>c Hamilton’s Rule



Misinterpretations of Hamilton’s Rule

l

Misunderstanding the nature of r

1. Washburn'’s Fallacy: Interpretation of r as proportion of common genes across the entire genome

Vast majority of human genes are same for all individuals = Washburn’s argument : All humans should be
universal altruists and only slightly more altruistic with close kin

But humans and chimps also share many common genes more so than humans and dogs

Does that imply humans should be more altruistic towards chimps than towards dogs ?

For evolution of altruism, all gene loci are not relevant, only those where the altruism gene(s) reside
r- Probability that two individuals possess the same allele since they descended from a single common ancestor

2. Charlesworth’s Paradox : Imagine a particular species where one of the offspring stays back to help save
and rear 4 of her later born siblings at the cost of her reproductive success = b=4, c=1, r=0.5

= rb > ¢ = such behaviour should evolve, yet it is not observed.

3. Mutations not taken into account when considering relatedness of (altruism) gene loci that are identical by
common descent. Individuals related through common descent from an ancestor in which the altruism allele
arose may still not be identical as a result of mutations in one of the offspring that changes the altruism

phenotype. Total # individuals that are non-identical by common descent = 4Nu+1 (from pop gen theory)

Not significant (for realistic population sizes (N) and mutation rates (u)) unless N or p or both are very large



Ways in which Cooperation can evolve

Repeated interactions leading to evolution of cooperation due to behavioral book-keeping
Direct Reciprocity as manifest in the success of TFT-like strategies

Indirect Reciprocity: Reputation (as a cooperator or defector) determines the likelihood of
being helped by others

Structured populations can facilitate survival and spread of altruistic behaviour

Positive assortment (facilitated by kin-recognition) leading to altruists interacting more
often with each-other than with non-altruists

Punishment

Limited Dispersal of the offspring from its birthplace

Can limited dispersal of offspring which increases the probability of interactions with kin
lead to spread of altruism?




Dispersal: A pictorial representation

m individuals left behin
in the Local group
compete locally for m
positions in the next
generation

Dispersal/Migration of (n-m)
individuals out of the Local
group. (n-m) positions that
become vacant will be filled by
offspring from the Global pool

Contribution of each local group to the Global Pool

I=m/n — Extent to which population regulation is local

m=n =» /=1 =» NO dispersal; Competition to be selected as a
member in the next generation occurs within the group i.e.
population regulation is LOCAL

m=0 => /=0 => Rapid dispersal leading to a well-mixed population. _

Population regulation occurs on a GLOBAL scale —
Average relatedness in a local group = J°



Modification of Hamilton’s Rule when population regulation is Loca/

When interaction and selection occurs within a group, Altruists compete with other Altruists to get selected
to the next generation 1

Average fitness of the global population is less relevant than the average fitness of the local population in

determining change in frequency of the Altruisim allele
_ (1_ )Wi(A)_Wi(N)
ol ZAC &

Ap; —
/ Wi Average fitness of the i'th group
Group index Ap — E ( Ap) ‘ Average increase or decrease across all groups
i

gives the change in frequency of the altruism
allele across the entire population

Extreme Case: Group consists of a pair of interacting individuals

Only pair-wise interaction that leads to change in Ap is the interaction between A and N

(=b—o0) (b+c¢)
A Pr(A| A4 Pr( A4 1—— P =—Pr(4
p = Pr(A| 4)(0) + Pr( IN)( )( 2)(b_ )/2+ (N | N)(0) r( IN)(2)(b_)
E(p,|p)—E(p;) E(p;)=10=-Dp+IE(p.|p))
,B(pj,pi): )
pi_E(pi) E(pi):(l_l)p+lE(pk|pi) A
verage relatedness
— between two individuals
E(pk , pl) = fpi + (1 — f)p within i's group

Probability that an average individual donor (K) in i's local group possess the A-allele given the
recipient (i) also possess the A-allele with frequency p_i



E(p,|p)—1(0-Dp+I(-r)p+irp;}
p,—{d-Dp+I(d-r)p+irp;}

P(p;,p;)=

\\ ¢77

For the specific individual “j” within i's local group whose coefficient of relatedness with i is r

E(p,|p)=m,+(-1r)p

| — l

If i and j are related, both If they are not related, both can
possess the altruism allele with still possess the altruism allele
probability proportional to p, with probability p
B ) r—Ir
Pi>P;)= —
g 1-1Ir
r—Ir

>C Generalized form of Hamilton’s rule

bB(p;sp)>c wmmmp b

When population regulation is Globali.e. =0 , the original form of Hamilton’s rule is recovered : br >c
When population regulation is entirely Locali.e. I=1 : Spread of altruism becomes less likely as 7 —> ¥

For case of competition between clones i.e. » = 77 = ] ; spread of altruism possible if b>c forall/



A model of dispersal in asexual organisms

L
Dispersal out of a site ®- -0— -@-

—

L
\ A=

There are n sites with each site being occupied by an Asexual adult which can produce multiple offsprings

Migration into a site

At each site, only one offspring can survive into adulthood

All individuals produce k offspirngs, all of which are biological clones = no variation within a group of siblings
v — fraction of k offsprings which emigrate (disperse) from its birth-site = # emigrants = kv

p — fraction of emigrants that survive = # emigrants that survive migration to some other site = pkv

Emigrants from a given site that survive migration are equally likely to reach and compete for any of the
remaining (n-1) sites.

(1-v)k - # offsprings that remain at their birth site

These offsprings compete with each other as well as immigrants from other sites to occupy their birth-site in
the next generation



A model of dispersal in asexual organisms

Common-type
tmmigrants l,I)A.

(1 _): "”A. (.\l'lfa'lﬂ-f\po') (.‘TI - 1,).” _ 1
n-1 nmigrants (v + 5)[)1.‘
(v + O)pk | -
"I'k _“—]— dispersal immaigration
‘.\ / .......... ) 2 nnnmnnn

.......... £y O

U home-bodies

(1—v—0)k

(1-v)k
Dispersal, Immigration and competition at a Dispersal, Immigration and competition at a
site originally occupied by a WT individual site originally occupied by a mutant

What is the condition under (which the mutant which initially appears at only one site) invades the population ?




Condition for invasion of mutants

Pr(M|WT): Probability that a mutant takes over a site, originally occupied by a WT, in the next generation

(V + 5)pk —2> H#mutants reaching that site
{ y o
Pr(M |WT) = n-1
(=) + (n-2)vpk . v+ (S)pk}
n-1 n-1 > Total #(M+WT) competing for that site

Expected number of successful mutant offspring across all (n-1) WT occupied sites

E#MIWT) = (n-1)Pr(M |WT') = (”(S)pap

I-v+vp+——
n-1

Pr(M|M): Probability that a mutant replaces it parent at its home site

(1-v-90)k
vpk+(1-v-90)k

Pr(M M) =
Since there is only one such site where the mutant can replace its parent, E(#M|M)=Pr(M|M)

sep—soo:  EGMIWT)=—+OP E#MIM)=—17Y=9)
(1-v)+vp+0p (1-v=-98)+wp




Total # successful mutants at ALL sites: E(#M)=E(#¥M|WT) + E(#M|M)

EG#M) = (v+5)p+ 1-v=-96
I-v+vp 1-v=-0+wp

If the mutant has on an average less than 1 successful offspring across all the n-sites i.e.
E(#M) < 1

it will not be able to invade and replace the WT

0
For d<<1 ignoring termsof O(5°)  E#M)<l==> > <Vv0
- P
1
If 6>0 mmmm) Mutant disperses more offspringthan WT E#M)<l==>v> ;
4
1
If 6<O mmmm) Mutant disperses less offspring than WT E#M)<l==>v< >
- P
o 1 |
Mutants can neverinvade iff = p* = —  regardless of the sign of 0



Connection between the model and spread of altruism

Emigrants _ Altruists

1. Dispersal (emigration) comes at a cost as it reduces the emigrants’ chances of survival.

2. Dispersal has a benefit . Avoiding competition with (k-1) siblings for survival till the next
generation and consequently enhancing the left-behind siblings average fitness.

A mutant (M) which produces more emigrants (6>0) is more altruistic than the WT

A mutant (M) which produces /ess emigrants (6<0) is less altruistic than the WT




Evolutionary Dynamics of Cancer

Cancer: Uncontrolled growth of abnormal (DNA damaged) cells.

Loss of Normal Growth Control

Normal =
cell division \’/
0@
Cell Suicide or Apoptosis

Cell damage— Cancer cells manage to evade apoptosis

no repair

oy SN * 2 Apoptosis: mechanism of programmed cell death
g which ensures damaged cells are eliminated

© . &
Q%

First Second Third Fourth or
mutation mutation mutation later mutation

[ LATKONAT]
Uncontrolied growth l? ".\_t.l’

Evolution and Cancer: How can cancer be understood in terms of evolution ?

In multi-cellular organisms, different types of cells must act in coordination with each other to ensure growth

and development of the entire organism.

Cells should divide when needed =» cooperation between cells essential for normal functioning

Each cell has numerous mechanisms to prevent uncontrolled cell-division. Failure of one or more such
mechanisms lead to cancerous growth =» Cancer occurs when certain cells turn into selfish agents by
replicating at abnormally high rates.



Cancer: Genetic Disease caused by mutations in certain types of genes

Mutations in Tumor Suppressor Genes (TSG) Mutations in Oncogenes

Cancer

Mutations in genes causing chromosomal instability (CIN)

Tumor Suppressor Genes (TSG): Class of genes that prevent cancerous tumor formation and growth.
Example: p53 — mutated in more than half of all human cancers.

Oncogenes: Class of genes which when mutated leads to cancer

Chromosomal Instability (CIN): Mutations in certain oncogenes lead to increase/decrease in the
number of chromosomes. Examples: MAD2, BRCA2, hBUB1, hCDC4



Tumor suppressor genes are inactivated by ...

1. two point mutations
|0 — 40—k

2. or one point mutation followed by
loss of heterozygosity (LOH)

Oncogenes are activated by ...

1. one specific point mutation

I I

2. by a gene amplification

| '

3. or by chromosomal fusion

Pathways to Cancer

% Mutations in the first allele is neutral no effect on cell
division rate.

% LOH occurs when a chromosome is lost eliminating the
corresponding allele of the TSG. Duplication of the
remaining chromosome leads to two identical
(homozygous) alleles of the TSG

«» Mutations in the second allele /ncrease the rate of cell
division of damaged cells leading to cancer

% A single mutation is sufficient to activate an oncogene.

% Activating mutations can occur in different ways such
as point mutation, gene amplification or chromosome
fusion.

% Either of the above processes /ncrease the rate of cell
division leading to uncontrolled proliferation of
damaged (cancerous) cells.



Chromosomal instability (CIN): IN
mutations in CIN genes increase the rate 3 classes of CIN genes

of gaining or losing whole chromosomes
if one allele is mutated in a

D0 <
dominant negative fashion.

I Example: hBUB1

Class | CIN genes trigger CIN
if one allele is mutated or lost.

Example: MAD2

Class Il CIN genes trigger CIN

Onco-CIN genes

I 0 Class Il CIN genes trigger CIN

I _ . / if both alleles are mutated.

Example: BRCA2

I
I I CIN suppressor genes

% Rate of loosing a chromosome in a cell due to mutations in CIN gene = 102 per chromosome per
cell division event.

% Rate of LOH in cells in which CIN genes have not undergone specific mutations ~ 107 - 106 .

% Mutations in CIN genes increase the replication rate of damaged cells which have more or less than
46 chromosomes =» proliferation of such cancerous cells.



Tissue architecture and spatial organization on cancer progression

Tissues divided into compartments each containing a population (Ne) of cells

The linear process

Colon cancer arises in a crypt
1. choose a cell for reproduction

Apoptosis (proportional to fitness)

on top of crypt

36 hours:
cell division

and migration
2. divide it into two, shift the others

|!_0_Q_9_Q_Q_Q_Q|0
A small number of stem cells

replenishes the whole crypt
3. the last one “falls off the edge”

A crypt contains 1,000-4,000 cells.
The colon contains 107 crypts. l

Well-mixed population of Tissue architecture

cells in a compartment and colon cancer Linear network

(Unstructured network)



Fixation of a mutant within a tissue compartment: Effect of tissue architecture and spatial organization

The linear process

1. choose a cell for reproduction
(proportional to fitness)

‘ N-population size within
‘ ‘ ‘ a tissue compartment I!_'_'_Q_'_Q_'_!I

‘ u_mutatlon rate per 2. divide it into two, shift the others
O ‘. cell-division event 000000000

‘ ‘ ‘ M - # com p a rtm e nts 3. the last one “falls off the edge”

o
Well-mixed population of cells in a compartment Linear network
(Unstructured network)

dP — Nut .- . .

— = Nu(1-P) P(t)=1-e¢ P(t) - Probability that a mutant arises by time t

dt
1-1/r .

Fixation probability of a single mutant: p = T (well-mixed case) pP= IY: (Linear network case)
~1/r

P, ()= 1—e " ; probability that a mutant gets fixed by timet ~ N=10°; u=10"; M=107; r=1.1; t=70 yrs
0 ~0.09 (well-mixed case) £ ~=0.001 (Linear network case)

Expected # mutated compartments after 70 years: P(t)M = 23000 (well-mixed); 26 (linear)
Architecture without compartments: N=107 P(t) ~ 0.28 in t<1 year

Linear architecture of tissue compartments significantly reduce rate of cancer progression



Cancer progression and TSG

What are the quantitative evolutionary questions that one can ask and answer in this context ?

How long does it take for a population of replicating cells to inactivate a TSG ?

Uy Us
I —p —_—
0 1 2

% Starting from a population of N WT cells, how long does it take for two mutations (one in each allele)
to appear in at least one cell ?

% How does this time depend on the population size and the mutation rates ul and u2 ?

Assumption: The first mutation in one of the alleles that occur with rate ul is neutral and it has no effect
on the replication rate of cell where that mutation has occurred.

Let A+ /+ represent a “Type 0” cell with two functional (unmutated) alleles

Let A+ /- represent a “Type 1” cell in which one allele of the TSG has been mutated but the remaining allele
is still functional

Let A-/- represent a “Type 2" cell in which both alleles have been mutated.
Questiorr: What is the probability that a single A-/- cell arises by time t in a population of replicating cells ?



Markovian Analysis of TSG Inactivation

Consider a Markov process with N+2 states. States i=0,1,2,....,N are either Type 0 or Type 1

Suppose there are i cells of Type 1 and (V-i) cells of Type 0
State i=N+1 is the only absorbing state and indicates that a cell of Type 2 has been produced.

The Transition Probabilities are given by the following equations

i TN=; N—-i| i N—i
P — 1 — P L — (1 —Uu ) +—U
v v u, N v Y N
Ll | |_l
— | -
Prob. of picking Prob. of picking Prob. that A+/+ Prob. of Prob. of Prob. that A+/-
A+/- for death A+/+ for picked for picking picking A+/- picked for
reproduction reproduction A+/+ for for reproduction
does not mutate death reproduction does not mutate
to A+/- to A-/-

!

v

Prob. of picking A+/+
for reproduction

Prob. that A+/+ picked
for reproduction mutates

to A+/-




Markovian Analysis of TSG Inactivation

SN

Pi,i—lzlﬁ Nl(l—ul) i=1..., N
I ri N —1i — 1

Pi,i=‘ﬁ[ﬁ(1—uz)+ u1]+( N )2(1_u1) 1 =0, , N
N—iri N —i ,

P it = N [ﬁ(l—uz)-l- ~ ul] i=0,...,N—1

Pi,N—H:lNuz i =0,..., N

PN+l,i=0 i=0,...,N

Pyiingr =1

Let #; be the time required to generate at least one Type 2 cell starting from a cell in state i.
to =1+ Py ot + Po, 1t
=1+P i i+ Pt +Pitiyy i=L...,N

tN41=0

This set of equations can be solved analytically in the limit of smal/ and /arge population size N



mall P lation Size: Allows for separation of time-scales
Small Population Size: Allo P Small populations: ~ N<1/Ju

1
r,=N Ev T.<<71, ——>N<<T
U

N+2 state Markov process reduces to a 3 state Markov process
Xo(1), X1 (1), X,(t) — probabilities of being in states 0,1,2 respectively

Frequency
o

State O : All cells are Type 0 i.e. A+/+ 2>hits > Time
State 2 : At least one cell is Type 2 i.e. A-/- X, (t)=P(t)
_I?;thz (ifcl:;?sd#g;g _T_ij(;eticinceplrlcs)bability of Rate of producing Type 2 cells from Type 1
Type 0 /
. \ 1 ,

Xy = =(Nu) () X, X, =u,X, - Nu X, X, = Nu, X,
Assumption: State 1 can be attained only Assumption: Fixation of Type 1 occurs
after all A+/+ cells mutates to A+/- cells before Type 2 cells can be produced

- —Nu,t
Nu,e U!—y, e~ Mo 2
P(t)=1— 2 1 zNU1U2 L [ <<——
NU2 - U1 2 Nl/tz
t > 1
~ —ut —
Pt)y~1—e"! Nu,




Large Population Size

Time scale of appearance of Type 1 cells: T ~ 1/Nu; < 1

Large
populations: N>1/uy
For large population size (N>1/u;) we can assume frequency
(x,) of Type 1 (A+/-) cells grows /inearly with time >
C
(0]
-]
L

P(t) — Probability that a mutation in the second allele occurs after time t

fl—f = (1- P)x, (01,

P(t)=1— exp(—Nu,ust7/2) | .

Nu;>1 =»P(t) = 1 = A-/- cell is produced in a shorter time scale compared to that in small populations

Time taken to inactivate a TSG in Large populations << Time taken to inactivate a TSG in smal// populations




What is the primary factor in cancer initiation ?

Inactivation of a TSG?
OR

CIN due to mutations in Onco-CIN genes?



Which mechanism is responsible for cancer initiation ?
Can inactivation of a TSG occur before CIN brought about by mutations in CIN genes ?

Does CIN speed up the process of inactivating a TSG ? _
Imp. question for cancer treatment

=>» Faster initiation of cancer in CIN cells than in cells without CIN

Inactivating a tumor suppressor gene Two possibilities for Knudson’s two hits

with and without CIN

1st hit 2nd hit
A+/+ — A+ - —p
1st hit
U1 U2
Sﬁﬂiut CIN I ’
2nd hit 2 hits
Jue

A+/+ —_— A+/—

CIN CIN

Cells 0 0 u3
with CIN

® TSG mutation [] CIN mutation

fast

Rapid LOH for A+/- CIN cells = A-/- CIN

Relation between mutation rates

U <u, N 1 1 1 Ui << Us
=10 ":1,=10" <<SUp LUy LU, =10 1,10~
Cells without CIN CIN cells

In state X, all cells are of type A*/*.

In state X, all cells are of type A/~

Consider a stochastic process In state X, all cells are of type A=/~ X, also represent probabilities of
with 6 states In state Y, all cells are of type A*/TCIN. flndlng the system in the
In state Y), all cells are of type AT/~CIN. corresponding state i at time t

In state Y, all cells are of type A~/~CIN.



If
Probability of finding the population in state Y2 (all A-/- CIN cells)
>
Probability of finding the population in state X2 (all A-/- cells without CIN)

=>» CIN is more likely to be responsible for cancer initiation than TSG inactivation

If
Probability of finding the population in state Y2 (all A-/- CIN cells)
<
Probability of finding the population in state X2 (all A-/- cells without CIN)

=>» TSG is more likely to be responsible for cancer initiation than CIN mutations




XO =—(u;+u)X, Assumptions
% The mutation in the first allele is selectively neutral = prob.

Xl = ”1X0 — (“c + N”z)Xl Of fixation of the A+/- mutant is 1/N
. < The CIN mutation which occurs at the rate u. is also
X, = Nu,X, selectively neutral.
. % A-/- cells have a strong selective advantage =» A single A-/-
Yo=u.Xy—u,Y, cell is very rapidly fixed in the population. This allows us to
consider transitions from state X, (or Y,) to the state X, (or

Y,=uX,+u,Yy— NusY, Y, in which all the cells are A-/-)

}}2 = NM3Y1

X,(1) ~ 1

Xl(t) ~U lt
In the time-scale (t) of a human lifetime ~ 70-80 yrs

Xz(t) ~ Nuluztz/z

ult, Nutut<<l| o) Y0 ~ut

Y (1) = ulucz‘2

Y,(t) ~ uu, t?



If CIN is to initiate cancer earlier than TSG

Y,t)>X,(t)=>u,>Nu,/2

If rate of LOH = p,
and

point mutation rate per gene = u

u,=u-+ P 0 Combination of point mutation rate for
mutating the second allele and LOH

If there exists n; Class 1 CIN genes and n, Class 2 CIN genes

u.=2mUu -|—p0) +2n,u

Evolution of cancer initiation

AT —e pt- _Nu, | ez

X,(t) = Nu,u,t?/2

Ug CIN mutations Ue
Y,(t) = uyupt?

uy NU3 “
AT —— AV ey
CIN CIN

... cause very fast LOH
u; =102

Y,(t)> X, (1) ‘ dn,(u+ p,)+4n,u > N@u+ p,)

Y,(t)
X, ()

If u~p0, N=4, n1=n2=2 =

3 m—p

~75% of all cancers initiated by CIN
~25% of all cancers initiated by TSG inactivation



Likelihood of cancer initiation by CIN in smal/ populations when CIN mutations have a selective disadvantage

XOZ_(ul m 0

) a

X1 =uX +uz)X1
X2=Nu2X1
YOO_“IYO

Y, = Npu,X,+ u,Yy — NusY,

Y2=NU3Y1

!

Xot) =1

X, (t)~ut

X,(t) ~ Nuuyt?/2
Yo(t) = Npu, .t

Y (1) = N,ouluct2

Y,(t) = Nouu, t*

CIN can imply a fitness gain, r >1,
or a fitness cost, r <1.

Uy Nu,

At P il A7

" This tunnel is
_1= important for
Np uc p 1—1/rN Np uc costly CIN and
large N.

u o /

A+/+ 1 A+/

CIN CIN

Y, (1) _ 2pu, _ 4pln (u+ p,)+nyu]

X, (1) U, u+ p,

If u~p0, N=4, n1=n2=2, r=0.8 9|p = 0.1734

ne _
—> X0 2.0813

~68% of all cancers would be initiated by CIN
~32% of all cancers would be initiated by TSG inactivation



Likelihood of cancer initiation by CIN in /arge populations when CIN mutations have a selective disadvantage

If N=100, r=0.7 9p = 1.39x10°16  =>» Fixation of a CIN mutant is extremely unlikely

A+/- CIN cells are produced at the rate Nu. but they are never
fixed in the population

=>» Transition from state X1 (A+/- non-CIN cells only) fo state X1 X Y1 ‘ Y2
Y1 (A+/- CIN cells only) does not occur.

X1=> Y2 transition is still possible. \_/

Average frequency of A+/- CIN cells at mutation/selection eq. = Nuc /(1 — r)

Rate at which A-/- CIN cells are produced from A+/- CIN cells —= ru,

Nu ru,
Tunneling Rate from state X1 to state Y2: R = ——
-7
Xo(t) =1
Xo=—u,X, X\ ~ If r=0.8, u3~0.01,u~p0,n1=n2=5
X[:U]XO_(R+NM2)X1 X;_(t)%Nuluztz/Z Yz(t) B rucu3 Yz(t) _06
X, = Nu,X, ‘ Yo(t) ~ 0 X, ) u,(1-7) X,
Y, =RX, Y,(t) ~ 0

~38% of all cancers initiated by CIN

~ 2
Y1)~ Ruyt™/2 ~62% of all cancers initiated by TSG inactivation



Is CIN is more likely to be responsible for cancer initiation than TSG inactivation ?

Depends on
(i) Whether the CIN mutation is neutral or selectively costly for the cell

(ii) The effective population size of the compartment
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